福建省福州市平潭综合实验区2022年数学九上期末达标测试试题含解析_第1页
福建省福州市平潭综合实验区2022年数学九上期末达标测试试题含解析_第2页
福建省福州市平潭综合实验区2022年数学九上期末达标测试试题含解析_第3页
福建省福州市平潭综合实验区2022年数学九上期末达标测试试题含解析_第4页
福建省福州市平潭综合实验区2022年数学九上期末达标测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.的值等于()A. B. C. D.12.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.已知二次函数的图象如图所示,则下列结论:①;②;③当时,:④方程有两个大于-1的实数根.其中正确的是()A.①②③ B.①②④ C.②③④ D.①③④4.已知,则的值是()A. B.2 C. D.5.在平面直角坐标系中,二次函数的图象可能是()A. B. C. D.6.若,则的值为()A.0 B.5 C.-5 D.-107.已知关于x的一元二次方程有两个实数根,则k的取值范围是()A. B.且C.且 D.8.如图,一只花猫发现一只老鼠溜进了一个内部连通的鼠洞,鼠洞只有三个出口,要想同时顾及这三个出口以防老鼠出洞,这只花猫最好蹲守在()A.的三边高线的交点处B.的三角平分线的交点处C.的三边中线的交点处D.的三边中垂线线的交点处9.如果一个扇形的弧长是π,半径是6,那么此扇形的圆心角为()A.40° B.45° C.60° D.80°10.一条排水管的截面如图所示,已知排水管的半径,水面宽,则截面圆心到水面的距离是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,是半圆,点O为圆心,C、D两点在上,且AD∥OC,连接BC、BD.若=65°,则∠ABD的度数为_____.12.一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同,从中随机摸出一个球,摸到红球的概率是______.13.反比例函数y=的图象经过点(﹣2,3),则k的值为_____.14.若,分别是一元二次方程的两个实数根,则__________.15.某车间生产的零件不合格的概率为.如果每天从他们生产的零件中任取10个做试验,那么在大量的重复试验中,平均来说,天会查出1个次品.16.要使式子在实数范围内有意义,则实数x的取值范围是________.17.在一个不透明的盒子里有2个红球和个白球,这些求除颜色外其余完全相同,摇匀后随机摸出一个,摸出红球的概率是,则的值为__________.18.二次函数的图像开口方向向上,则______0.(用“=、>、<”填空)三、解答题(共66分)19.(10分)如图1,的直径,点为线段上一动点,过点作的垂线交于点,,连结,.设的长为,的面积为.小东根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.下面是小东的探究过程,请帮助小东完成下面的问题.(1)通过对图1的研究、分析与计算,得到了与的几组对应值,如下表:00.511.522.533.5400.71.72.94.85.24.60请求出表中小东漏填的数;(2)如图2,建立平面直角坐标系,描出表中各对应值为坐标的点,画出该函数的大致图象;(3)结合画出的函数图象,当的面积为时,求出的长.20.(6分)如图,在平面直角坐标系中,直线AB与函数y=(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=OC,且△ACD的面积是6,连接BC.(1)求m,k,n的值;(2)求△ABC的面积.21.(6分)新罗区某校元旦文艺汇演,需要从3名女生和1名男生中随机选择主持人.(1)如果选择1名主持人,那么男生当选的概率是多少?(2)如果选择2名主持人,用画树状图(或列表)求出2名主持人恰好是1男1女的概率.22.(8分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示.(1)求与的函数关系式,并写出的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.23.(8分)如图,四边形是正方形,连接,将绕点逆时针旋转得,连接,为的中点,连接,.(1)如图1,当时,求证:;(2)如图2,当时,(1)还成立吗?请说明理由.24.(8分)某校为了解每天的用电情况,抽查了该校某月10天的用电量,统计如下(单位:度):用电量9093102113114120天数112312(1)该校这10天用电量的众数是度,中位数是度;(2)估计该校这个月的用电量(用30天计算).25.(10分)图①、图②均是6×6的正方形网格,每个小正方形的顶点称为格点.线段AB的端点均在格点上,按下列要求画出图形.(1)在图①中找到两个格点C,使∠BAC是锐角,且tan∠BAC=;(2)在图②中找到两个格点D,使∠ADB是锐角,且tan∠ADB=1.26.(10分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据sin60°以及tan45°的值求解即可.【详解】sin60°=,tan45°=1,所以sin60°+tan45°=.故选B.【点睛】本题主要考查特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.2、B【解析】试题分析:根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,也不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选B.点睛:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3、B【分析】①由二次函数的图象开口方向知道a<0,与y轴交点知道c>0,由此即可确定ac的符号;②由于二次函数图象与x轴有两个交点即有两个不相等的实数根,由此即可判定的符号;③根据图象知道当x<0时,y不一定小于0,由此即可判定此结论是否正确;④根据图象与x轴交点的情况即可判定是否正确.【详解】解:∵图象开口向下,∴a<0,∵图象与y轴交于正半轴,则c>0,∴ac<0,故选项①正确;∵二次函数图象与x轴有两个交点即有两个不相等的实数根,即,故选项②正确;③当x<0时,有部分图象在y的上半轴即函数值y不一定小于0,故选项③错误;④利用图象与x轴交点都大于-1,故方程有两个大于-1的实数根,故选项④正确;故选:B.【点睛】本题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:当时,,然后根据图象判断其值.4、C【分析】设x=5k(k≠0),y=2k(k≠0),代入求值即可.【详解】解:∵∴x=5k(k≠0),y=2k(k≠0)∴故选:C.【点睛】本题考查分式的性质及化简求值,根据题意,正确计算是解题关键.5、A【分析】根据二次函数图像的特点可得.【详解】解:二次函数与轴有两个不同的交点,开口方向向上.故选:A.【点睛】本题考查了二次函数的图象,解决本题的关键是二次函数的开口方向和与x轴的交点.6、C【分析】将转换成的形式,再代入求解即可.【详解】将代入原式中原式故答案为:C.【点睛】本题考查了代数式的运算问题,掌握代入法是解题的关键.7、C【分析】若一元二次方程有两个实数根,则根的判别式△=b24ac≥1,建立关于k的不等式,求出k的取值范围.还要注意二次项系数不为1.【详解】解:∵一元二次方程有两个实数根,∴,解得:,∵,∴k的取值范围是且;故选:C.【点睛】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.8、D【分析】根据题意知,猫应该蹲守在到三个洞口的距离相等的位置上,则此点就是三角形三边垂直平分线的交点.【详解】解:根据三角形三边垂直平分线的交点到三个顶点的距离相等,可知猫应该蹲守在△ABC三边的中垂线的交点上.

故选:D.【点睛】考查了三角形的外心的概念和性质.要熟知三角形三边垂直平分线的交点到三个顶点的距离相等.9、A【解析】试题分析:∵弧长,∴圆心角.故选A.10、B【解析】根据垂径定理求出,根据勾股定理求出即可.【详解】解:,过圆心点,,在中,由勾股定理得:,故选:.【点睛】本题考查了勾股定理和垂径定理的应用;由垂径定理求出是解决问题的关键.二、填空题(每小题3分,共24分)11、25°【分析】根据AB是直径可以证得AD⊥BD,根据AD∥OC,则OC⊥BD,根据垂径定理求得弧BC的度数,即可求得的度数,然后求得∠ABD的度数.【详解】解:∵是半圆,即AB是直径,∴∠ADB=90°,又∵AD∥OC,∴OC⊥BD,∴=65°∴=180°﹣65°﹣65°=50°,∴∠ABD=.故答案为:25°.【点睛】本题考查了垂径定理、圆周角的定理,利用垂径定理证明=65°是解决本题的关键.12、【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,共5个,从中随机摸出一个,则摸到红球的概率是故答案为:.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13、-1【解析】将点(−2,3)代入解析式可求出k的值.【详解】把(−2,3)代入函数y=中,得3=,解得k=−1.故答案为−1.【点睛】主要考查了用待定系数法求反比例函数的解析式.先设y=,再把已知点的坐标代入可求出k值,即得到反比例函数的解析式.14、-3【分析】根据一元二次方程根与系数的关系的公式,代入所求式即可得解.【详解】由题意,得,∴故答案为:-3.【点睛】此题主要考查一元二次方程根与系数的关系,熟练掌握,即可解题15、1.【解析】试题分析:根据题意首先得出抽取10个零件需要1天,进而得出答案.解:∵某车间生产的零件不合格的概率为,每天从他们生产的零件中任取10个做试验,∴抽取10个零件需要1天,则1天会查出1个次品.故答案为1.考点:概率的意义.16、.【分析】根据二次根式被开方数大于等于0,对于分式,分母不能为0,列式计算即可得解.【详解】既是二次根式,又是分式的分母,∴解得:∴实数的取值范围是:故答案为:【点睛】本题主要考查了二次根式及分式有意义的条件,正确把握相关定义是解题关键.17、1【分析】根据红球的概率结合概率公式列出关于n的方程,求出n的值即可【详解】解:∵摸到红球的概率为∴解得n=1.

故答案为:1.【点睛】本题考查概率的求法与运用,根据概率公式求解即可:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率18、>【分析】根据题意直接利用二次函数的图象与a的关系即可得出答案.【详解】解:因为二次函数的图像开口方向向上,所以有>1.故填>.【点睛】本题主要考查二次函数的性质,掌握二次项系数a与抛物线的关系是解题的关键,图像开口方向向上,>1;图像开口方向向下,<1.三、解答题(共66分)19、(1);(2)详见解析;(3)2.0或者3.7【分析】(1)当x=2时,点C与点O重合,此时DE是直径,由此即可解决问题;(2)利用描点法即可解决问题;(3)利用图象法,确定y=4时x的值即可;【详解】(1)当时,即是直径,可求得的面积为4.0,∴;(2)函数图象如图所示:(3)由图像可知,当时,或3.7【点睛】本题考查圆综合题,三角形的面积,函数图象等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.20、(1)m=1,k=8,n=1;(2)△ABC的面积为1.【解析】试题分析:(1)由点A的纵坐标为2知OC=2,由OD=OC知OD=1、CD=3,根据△ACD的面积为6求得m=1,将A的坐标代入函数解析式求得k,将点B坐标代入函数解析式求得n;(2)作BE⊥AC,得BE=2,根据三角形面积公式求解可得.试题解析:(1)∵点A的坐标为(m,2),AC平行于x轴,∴OC=2,AC⊥y轴,∵OD=OC,∴OD=1,∴CD=3,∵△ACD的面积为6,∴CD•AC=6,∴AC=1,即m=1,则点A的坐标为(1,2),将其代入y=可得k=8,∵点B(2,n)在y=的图象上,∴n=1;(2)如图,过点B作BE⊥AC于点E,则BE=2,∴S△ABC=AC•BE=×1×2=1,即△ABC的面积为1.考点:反比例函数与一次函数的交点问题.21、(1);(2)见解析,【分析】(1)由题意根据所有出现的可能情况,然后由概率公式即可求出男生当选的概率;(2)首先根据题意画出树状图,由树状图求得所有等可能的结果与选出的是1名男生1名女生的情况,然后由概率公式即可求解.【详解】解:(1)∵需要从3名女生和1名男生中随机选择1名主持人,∴男生当选的概率P(男生)=.(2)根据题意画画树状图,总共有12种结果,每种结果出现的可能性相同,而2名主持人恰好是1男1女的结果有6种,所以2名主持人恰好是1男1女的概率P(一男一女)=.【点睛】本题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;另外注意概率=所求情况数与总情况数之比.22、(1)();(2)定价为19元时,利润最大,最大利润是1210元.(3)不能销售完这批蜜柚.【解析】(1)根据图象利用待定系数法可求得函数解析式,再根据蜜柚销售不会亏本以及销售量大于0求得自变量x的取值范围;(2)根据利润=每千克的利润×销售量,可得关于x的二次函数,利用二次函数的性质即可求得;(3)先计算出每天的销量,然后计算出40天销售总量,进行对比即可得.【详解】(1)设,将点(10,200)、(15,150)分别代入,则,解得,∴,∵蜜柚销售不会亏本,∴,又,∴,∴,∴;(2)设利润为元,则==,∴当时,最大为1210,∴定价为19元时,利润最大,最大利润是1210元;(3)当时,,110×40=4400<4800,∴不能销售完这批蜜柚.【点睛】本题考查了一次函数的应用、二次函数的应用,弄清题意,找出数量间的关系列出函数解析式是解题的关键.23、(1)详见解析;(2)当时,成立,理由详见解析.【分析】(1)由旋转的性质得:,根据直角三角形斜边中线的性质可得OD=CF,OE=CF,进而可得OD=OE;(2)连接CE、DF,根据等腰三角形的性质可得,利用角的和差关系可得,利用SAS可证明△ACE≌△AFD,可得CE=DF,∠ECA=∠DFA,利用角的和差关系可得,利用SAS可证明△EOC≌△DOF,即可证明OD=OE,可得(1)结论成立.【详解】(1)∵四边形ABCD是正方形,AC为对角线,∴∠BAC=45°,∵将绕点逆时针旋转得,=45°,∴点E在AC上,∴,为的中点,∴同理:∴.(2)当时,成立,理由如下:连接,如图所示:∵在正方形中,,AB=AE,∴,∵为的中点,∴,∵,∴,∵=45°,∴,∴,在和中,,∴,∴,∵,∴,∴,在和中,,∴,∴.【点睛】本题考查正方形的性质、旋转的性质及全等三角形的判定与性质,正确得出对应边和对应角,熟练掌握全等三角形的判定定理是解题关键.24、(1)113;113;(2)3240度.【分析】(1)分别利用众数、中位数的定义求解即可;(2)根据平均数的计算方法计算出平均用电量,再乘以总用电天数即可得解.【详解】解:(1)113度出现了3此,出现的次数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论