




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.对称现象无处不在,请你观察下面的四个图形,它们体现了中华民族的传统文化,其中,可以看作是轴对称图形的有()A.1个 B.2个 C.3个 D.4个2.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A. B. C. D.3.武侯区初中数学分享学习课堂改革正在积极推进,在一次数学测试中,某班的一个共学小组每位同学的成绩(单位:分;满分100分)分别是:92,90,94,88,记这组数据的方差为.将上面这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣2,记这组新数据的方差为,此时有=,则的值为()A.1 B.2 C.4 D.54.若是完全平方式,则的值为()A.-5或7 B. C.13或-11 D.11或-135.如图,点D在AB上,点E在AC上,AB=AC添加下列一个条件后,还不能证明△ABE≌△ACD的是()A.AD=AE B.BD=CE C.∠B=∠C D.BE=CD6.下列命题为真命题的是()A.三角形的一个外角大于任何一个和它不相邻的内角B.两直线被第三条直线所截,同位角相等C.垂直于同一直线的两直线互相垂直D.三角形的外角和为7.下列各点中,位于第二象限的是()A.(4,3) B.(﹣3,5) C.(3,﹣4) D.(﹣4,﹣3)8.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面处折断,树尖恰好碰到地面,经测量,则树高为().A. B. C. D.9.用计算器依次按键,得到的结果最接近的是()A. B. C. D.10.下列命题,是真命题的是()A.三角形的外角和为B.三角形的一个外角大于任何一个和它不相邻的内角.C.两条直线被第三条直线所截,同位角相等.D.垂直于同一直线的两直线互相垂直.11.已知关于x,y的二元一次方程组的解为,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣312.下列六个数:0、、、、-、中,无理数出现的频数是().A.3 B.4 C.5 D.6二、填空题(每题4分,共24分)13.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于14.如图①,四边形中,,点从点出发,沿折线运动,到点时停止,已知的面积与点运动的路程的函数图象如图②所示,则点从开始到停止运动的总路程为________.15.计算:=__________16.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE=40°,则∠DBC=_____.17.如图,AB∥CD,DE∥CB,∠B=35°,则∠D=_____°.18.函数中,自变量的取值范围是.三、解答题(共78分)19.(8分)计算(1)(2)20.(8分)如图,一次函数的图像与轴交于点,与轴交于点,且与正比函数的图像交于点,结合图回答下列问题:(1)求的值和一次函数的表达式.(2)求的面积;(3)当为何值时,?请直接写出答案.21.(8分)如图所示,在△ABC中,∠ABC和∠ACB的平分线交于点O,过点O作EF∥BC,交AB于点E,交AC于点F.(1)若∠ABC=40°,∠ACB=60°,求∠BOE+∠COF的度数;(2)若△AEF的周长为8cm,且BC=4cm,求△ABC的周长.22.(10分)如图,正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点.(1)在图①中,以格点为端点画一条长度为的线段MN;(2)在图②中,A、B、C是格点,求∠ABC的度数.23.(10分)如图,长方体底面是长为2cm宽为1cm的长方形,其高为8cm.(1)如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,请利用侧面展开图计算所用细线最短需要多少?(2)如果从点A开始经过4个侧面缠绕2圈到达点B,那么所用细线最短需要多少?24.(10分)如图,在中,,,平分,且,连接、(1)求证:;(2)求的度数25.(12分)如图,等腰三角形ABC中,AB=AC=4,∠BAC=100°,点D是底边BC的动点(点D不与B、C重合),连接AD,作∠ADE=40°,DE与AC交于点E.(1)当DC等于多少时,△ABD与△DCE全等?请说明理由;(2)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求出∠BDA的度数;若不可以,请说明理由.26.如图,在平面直角坐标中,已知A(﹣1,5),B(﹣3,0),C(﹣4,3)(1)在图中作出△ABC关于y轴对称的图形△A′B′C′;(2)如果线段AB的中点是P(﹣2,m),线段A'B'的中点是(n﹣1,2.5).求m+n的值.(3)求△A'B'C的面积.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据轴对称图形的概念求解.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.【详解】解:4个图形都是轴对称图形.故选D.【点睛】本题考查了轴对称图形的定义.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2、B【详解】由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.故选B.考点:作图—复杂作图3、D【分析】根据方差公式计算出的值,再根据=,即可得出的值.【详解】=(2+0+4﹣2)÷4=1,,∵=,∴的值为5,故选:D.【点睛】本题考查了方差的实际应用,掌握方差的计算公式是解题的关键.4、C【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【详解】解:∵9x2-2(k-1)x+16=(3x)2-2(k-1)x+42,
∵9x2-2(k-1)x+16是完全平方式,∴-2(k-1)x=±2×3x×4,
解得k=13或k=-1.
故选:C.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.5、D【分析】判定全等三角形时,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.【详解】解:A、∵在△ABE和△ACD中∴△ABE≌△ACD(SAS),故本选项不符合题意;B、∵AB=AC,BD=CE,∴AD=AE,在△ABE和△ACD中∴△ABE≌△ACD(SAS),故本选项不符合题意;C、∵在△ABE和△ACD中∴△ABE≌△ACD(ASA),故本选项不符合题意;D、根据AB=AC,BE=CD和∠A=∠A不能推出△ABE≌△ACD,故本选项符合题意;故选:D.【点睛】本题主要考查了全等三角形的判定,全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.6、A【解析】根据三角形的外角性质、平行线的性质、平行公理的推论、三角形外角和定理判断即可.【详解】三角形的一个外角大于任何一个和它不相邻的内角,A是真命题;两条平行线被第三条直线所截,同位角相等,B是假命题;在同一平面内,垂直于同一直线的两直线互相平行,C是假命题;三角形的外角和为360°,D是假命题;故选A.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7、B【分析】依据位于第二象限的点的横坐标为负,纵坐标为正,即可得到结论.【详解】解:∵位于第二象限的点的横坐标为负,纵坐标为正,∴位于第二象限的是(﹣3,5)故选:B.【点睛】此题考查点的坐标,解题关键在于掌握坐标的特征.8、D【分析】根据题意画出三角形,用勾股定理求出BC的长,树高就是AC+BC的长.【详解】解:根据题意,如图,画出一个三角形ABC,AC=6m,AB=8m,∵,∴,∴,树高=.故选:D.【点睛】本题考查勾股定理的应用,解题的关键是掌握用勾股定理解三角形的方法.9、C【分析】利用计算器得到的近似值即可得到答案.【详解】解:,与最接近的是2.1.故选:C.【点睛】本题主要考查计算器的使用,解题的关键是掌握计算器上常用的按键的功能和使用顺序.10、B【分析】根据三角形的性质,平行与垂直的性质逐一判断即可.【详解】解:A.三角形的外角和为,故错误;B.三角形一个外角等于与它不相邻的两个内角的和,所以它大于任何一个和它不相邻的内角,故正确;C.两条平行线被第三条直线所截,同位角相等,故错误;D.垂直于同一直线的两直线互相平行,故错误.故选:B.【点睛】本题通过判断命题的真假考查了几何基本图形的性质定理,理解掌握相关性质是解答关键.11、B【详解】把代入方程组得:,解得:,所以a−2b=−2×()=2.故选B.12、A【分析】根据无理数的概念即可作答.【详解】解:∵其中无理数有:,,;∴无理数出现的频数是3,故选:A.【点睛】本题考查无理数的概念,是中考的常考题,掌握无理数的内涵是基础.二、填空题(每题4分,共24分)13、6【解析】试题分析:由全等可知:AH=DE,AE=AH+HE,由直角三角形可得:,代入可得.考点:全等三角形的对应边相等,直角三角形的勾股定理,正方形的边长相等14、11【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【详解】解:作CE⊥AD于点E,如下图所示,由图象可知,点P从A到B运动的路程是3,当点P与点B重合时,△PAD的面积是,由B到C运动的路程为3,∴解得,AD=7,又∵BC//AD,∠A=90°,CE⊥AD,∴∠B=90°,∠CEA=90°,∴四边形ABCE是矩形,∴AE=BC=3,∴DE=AD-AE=7-3=4,∴∴点P从开始到停止运动的总路程为:AB+BC+CD=3+3+5=11.故答案为:11【点睛】本题考查了根据函数图象获取信息,解题的关键是明确题意,能从函数图象中找到准确的信息,利用数形结合的思想解答问题.15、-1【分析】直接利用算术平方根的意义、绝对值和零指数幂的性质分别化简得出答案.【详解】原式=1−5+1=−3+1=−1.故答案为:-1【点睛】点评:此题主要考查了实数运算,正确化简各数是解题关键.16、15°.【解析】先根据线段垂直平分线的性质得出DA=DB,∠AED=∠BED=90,即可得出∠A=∠ABD,∠BDE=∠ADE,然后根据直角三角形的两锐角互余和等腰三角形的性质分别求出∠ABD,∠ABC的度数,即可求出∠DBC的度数.【详解】∵AB的垂直平分线交AC于D,交AB于E,∴DA=DB,∠AED=∠BED=90,∴∠A=∠ABD,∠BDE=∠ADE,∵∠ADE=40,∴∠A=∠ABD=90=50,∵AB=AC,∴∠ABC=,∴∠DBC=∠ABC-∠ABD=15.故答案为:15.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质.17、1【分析】根据平行线的性质可得∠B=∠C=35°,再根据BC∥DE可根据两直线平行,同旁内角互补可得答案.【详解】解:∵AB∥CD,∴∠C=∠B=35°.∵DE∥CB,∴∠D=180°﹣∠C=1°.故答案为:1.【点睛】此题考查了平行线的性质,解答关键是掌握两直线平行,同旁内角互补.两直线平行,内错角相等.18、.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数.【详解】依题意,得x-1≥0,
解得:x≥1.【点睛】本题考查的知识点为:二次根式的被开方数是非负数.三、解答题(共78分)19、(1);(2)【分析】(1)先根据二次根式、绝对值和负整数指数幂的性质化简,然后再进行计算;(2)先化简各二次根式,然后再进行计算.【详解】解:(1)原式;(2)原式.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20、(1);(2);(3).【分析】(1)易求出点A的坐标,即可用待定系数法求解;
(2)由解析式求得C的坐标,即可求出△BOC的面积;
(3)根据图象即可得到结论.【详解】(1)∵一次函数y1=kx+b的图象与正比例函数的图象交于点A(m,3),
∴,
∴m=4,
∴A(4,3);
把A(4,3),B(0,1)代入得,,解得,∴一次函数的表达式为;(2)当时,,
∴C(-2,0),∴,∵B(0,1),∴,
∴△BOC的面积;(3)由图象知,当-2<x<0时,则、异号,∴当-2<x<0时,.【点睛】本题考查了两条直线相交或平行问题,待定系数法求函数的解析式,三角形面积的计算,正确的识别图象是解题的关键.21、(1)∠BOE+∠COF=50°;(2)12cm.【解析】(1)两直线平行,内错角相等,以及根据角平分线性质,可得到从而求得∠BOE+∠COF的度数.(2)根据,可得△FOC、△EOB均为等腰三角形,由此把△AEF的周长转化为AC+AB,进而可得到△ABC的周长.【详解】解:(1)∵EF∥BC,∴∠OCB=∠COF,∠OBC=∠BOE.又∵BO,CO分别是∠BAC和∠ACB的角平分线,∴∠COF=∠FCO=∠ACB=30°,∠BOE=∠OBE=∠ABC=20°.∴∠BOE+∠COF=50°.(2)∵∠COF=∠FCO,∴OF=CF.∵∠BOE=∠OBE,∴OE=BE.∴△AEF的周长=AF+OF+OE+AE=AF+CF+BE+AE=AB+AC=8cm.∴△ABC的周长=8+4=12(cm).【点睛】此题主要考查了平行线的性质和等腰三角形的判定及性质;对相等的线段进行有效等量代换是解答本题的关键.22、(1)见解析;(2)45°【分析】(1)根据网格和勾股定理即可在图①中,以格点为端点画一条长度为的线段MN;(2)连接AC,根据勾股定理及逆定理可得三角形ABC是等腰直角三角形,进而可求∠ABC的度数.【详解】解:(1)如图根据勾股定理,得MN===;(2)连接AC∵,,,∴AC2+BC2=AB2,∴ABC是等腰直角三角形,∴∠ABC=45°.【点睛】此题考查的是勾股定理和网格问题,掌握勾股定理及逆定理是解决此题的关键.23、(1)所用细线最短需要10cm;(2)所用细线最短需要cm.【详解】(1)将长方体的四个侧面展开如图,连接A、B,
根据两点之间线段最短,AB=cm;(2)如果从点A开始经过4个侧面缠绕2圈到达点B,相当于直角三角形的两条直角边分别是12和8,根据勾股定理可知所用细线最短需要cm.答:(1)所用细线最短需要10cm.(2)所用细线最短需要cm.24、(1)详见解析;(2)【分析】(1)利用等腰三角形等边对等角的性质求得,利用角平分线的定义求得,然后再利用等腰三角形等边对等角的性质求得,从而求得,使问题得证;(2)延长到点,使得,根据SAS定理证明,从而得到,,设,则,然后利用三角形内角列方程求得α的值,从而使问题得解.【详解】(1)∵,∴∵平分∴∵∴∴∴;(2)延长到点,使得,连接CE,∵,∴(SAS)∴,∴设∵∴∴∴∴∴.【点睛】本题考查等腰三角形的性质,全等三角形的判定和性质,及三角形内角和的应用,正确添加辅助线构造全等三角形是解题关键.25、(1)当DC=4时,△ABD≌△DCE,理由详见解析;(2)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.【分析】(1)当DC=4时,利用∠DEC+∠EDC=140,∠ADB+∠EDC=140,得到∠ADB=∠DEC,根据AB=DC=4,证明△ABD≌△DCE;(2)分DA=DE、AE=AD、EA=ED三种情况,根据等腰三角形的性质、三角形内角和定理计算.【详解】解:(1)当DC=4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国隔爆灯行业发展研究报告
- 2025至2030年中国锻制阀门行业发展研究报告
- 2025至2030年中国钻井液高温降滤失剂行业发展研究报告
- 2025至2030年中国重型水箱式拉丝机行业发展研究报告
- 2025至2030年中国转动惯量实验器行业发展研究报告
- 2025至2030年中国衬衫扣行业发展研究报告
- 2025至2030年中国花型金属卷圆隔离栅行业发展研究报告
- 2025至2030年中国聚氯乙烯绝缘护套控制软电缆行业发展研究报告
- 2025至2030年中国绒线编结制品行业发展研究报告
- 2025至2030年中国精子普通染色试剂行业发展研究报告
- GB/T 1508-2002锰矿石全铁含量的测定重铬酸钾滴定法和邻菲啰啉分光光度法
- GA/T 1788.3-2021公安视频图像信息系统安全技术要求第3部分:安全交互
- 小学六年级信息技术复习题
- 食品安全培训(食品安全知识)-课件
- 初二物理新人教版《功》公开课一等奖省优质课大赛获奖课件
- 北京大学国际政治经济学教学大纲
- 跨文化沟通的本质-PPT课件
- 合肥市建设工程消防设计审查、消防验收、备案与抽查文书样式
- 《电气工程基础》熊信银-张步涵-华中科技大学习题答案全解
- 北美连续油管技术的新进展及发展趋势李宗田
- 行政单位会计实习报告(共36页)
评论
0/150
提交评论