版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,已知四边形ABCD内接于⊙O,AB是⊙O的直径,EC与⊙O相切于点C,∠ECB=35°,则∠D的度数是()A.145° B.125° C.90° D.80°2.如图,将绕点顺时针旋转,得到,且点在上,下列说法错误的是()A.平分 B. C. D.3.方程2x(x﹣5)=6(x﹣5)的根是()A.x=5 B.x=﹣5 C.=﹣5,=3 D.=5,=34.对于题目“如图,在中,是边上一动点,于点,点在点的右侧,且,连接,从点出发,沿方向运动,当到达点时,停止运动,在整个运动过程中,求阴影部分面积的大小变化的情况"甲的结果是先增大后减小,乙的结果是先减小后增大,其中()A.甲的结果正确 B.乙的结果正确C.甲、乙的结果都不正确,应是一直增大 D.甲、乙的结果都不正确,应是一直减小5.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t(小时)之间的函数图象是A. B.C. D.6.如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动,设点B的坐标为(0,b),则b的取值范围是()A.≤b≤1 B.≤b≤1 C.≤b≤ D.≤b≤17.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则()A.摸出黑球的可能性最小 B.不可能摸出白球C.一定能摸出红球 D.摸出红球的可能性最大8.函数与抛物线的图象可能是().A. B. C. D.9.如图,OA是⊙O的半径,弦BC⊥OA,D是优弧上一点,如果∠AOB=58º,那么∠ADC的度数为()A.32º B.29º C.58º D.116º10.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与相似的是()A. B. C. D.11.如图,是岑溪市几个地方的大致位置的示意图,如果用表示孔庙的位置,用表示东山公园的位置,那么体育场的位置可表示为()A. B. C. D.12.如图,点M为反比例函数y=上的一点,过点M作x轴,y轴的垂线,分别交直线y=-x+b于C,D两点,若直线y=-x+b分别与x轴,y轴相交于点A,B,则AD·BC的值是()A.3 B.2 C.2 D.二、填空题(每题4分,共24分)13.若反比例函数的图像在二、四象限,其图像上有两点,,则______(填“”或“”或“”).14.已知反比例函数的图象与经过原点的直线相交于点两点,若点的坐标为,则点的坐标为__________.15.如图,直线y=+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是_________.16.如图,中,边上的高长为.作的中位线,交于点;作的中位线,交于点;……顺次这样做下去,得到点,则________.
17.已知x=1是关于x的一元二次方程2x2﹣x+a=0的一个根,则a的值是_____.18.若x1、x2是关于x的一元二次方程x2-2x-3=0的两个实数根,则x1+x2=______.三、解答题(共78分)19.(8分)如图,已知BCAC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB与⊙O的交点,点P是AD延长线与BC的交点,且ADAOAMAP,连接OP.(1)证明:MD//OP;(2)求证:PD是⊙O的切线;(3)若AD24,AMMC,求的值.20.(8分)如图1,若要建一个长方形鸡场,鸡场的一边靠墙(墙长18米),墙对面有一个2米宽的门,另三边用竹篱笆围成,篱笆总长33米.求:(1)若鸡场面积150平方米,鸡场的长和宽各为多少米?(2)鸡场面积可能达到200平方米吗?(3)如图2,若在鸡场内要用竹篱笆加建一道隔栏,则鸡场最大面积可达多少平方米?21.(8分)如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC于点D,连接BD.(1)求证:∠A=∠CBD.(2)若AB=10,AD=6,M为线段BC上一点,请写出一个BM的值,使得直线DM与⊙O相切,并说明理由.22.(10分)某农科所研究出一种新型的花生摘果设备,一期研发成本为每台6万元,该摘果机的销售量(台)与售价(万元/台)之间存在函数关系:.(1)设这种摘果机一期销售的利润为(万元),问一期销售时,在抢占市场份额(提示:销量尽可能大)的前提下利润达到32万元,此时售价为多少?(2)由于环保局要求该机器必须增加除尘设备,科研所投入了7万元研究经费,使得环保达标且机器的研发成本每台降低了1万元,若科研所的销售战略保持不变,请问在二期销售中利润达到63万元时,该机器单台的售价为多少?23.(10分)已知关于x的方程x2-6x+k=0的两根分别是x1、x2.(1)求k的取值范围;(2)当+=3时,求k的值.24.(10分)如图,抛物线与轴交于点,,与轴交于点.(1)求点,,的坐标;(2)将绕的中点旋转,得到.①求点的坐标;②判断的形状,并说明理由.(3)在该抛物线对称轴上是否存在点,使与相似,若存在,请写出所有满足条件的点的坐标;若不存在,请说明理由.25.(12分)如图,直线分别与轴交于点,与轴交于点,与双曲线交于点.(1)求与的值;(2)已知是轴上的一点,当时,求点的坐标.26.在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树状图的方法,求下列事件的概率:(1)两次取出小球上的数字相同;(2)两次取出小球上的数字之和大于1.
参考答案一、选择题(每题4分,共48分)1、B【解析】试题解析:连接∵EC与相切,故选B.点睛:圆内接四边形的对角互补.2、C【分析】由题意根据旋转变换的性质,进行依次分析即可判断.【详解】解:解:∵△ABC绕点A顺时针旋转,旋转角是∠BAC,∴AB的对应边为AD,BC的对应边为DE,∠BAC对应角为∠DAE,∴AB=AD,DE=BC,∠BAC=∠DAE即平分,∴A,B,D选项正确,C选项不正确.故选:C.【点睛】本题考查旋转的性质,旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.3、D【分析】利用因式分解法求解可得.【详解】解:∵2x(x﹣5)=6(x﹣5)2x(x﹣5)﹣6(x﹣5)=0,∴(x﹣5)(2x﹣6)=0,则x﹣5=0或2x﹣6=0,解得x=5或x=3,故选:D.【点睛】本题考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.4、B【分析】设PD=x,AB边上的高为h,求出AD、h,构建二次函数,利用二次函数的性质解决问题即可.【详解】解:在中,∵,∴,设,边上的高为,则.∵,∴,∴,∴,∴,∴当时,的值随的增大而减小,当时,的值随的增大而增大,∴乙的结果正确.故选B.【点睛】本题考查相似三角形的判定和性质,动点问题的函数图象,三角形面积,勾股定理等知识,解题的关键是构建二次函数,学会利用二次函数的增减性解决问题,属于中考常考题型.5、C【解析】分三段讨论:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选C.6、B【分析】延长NM交y轴于P点,则MN⊥y轴.连接CN.证明△PAB∽△NCA,得出,设PA=x,则NA=PN﹣PA=3﹣x,设PB=y,代入整理得到y=3x﹣x2=﹣(x﹣)2+,根据二次函数的性质以及≤x≤3,求出y的最大与最小值,进而求出b的取值范围.【详解】解:如图,延长NM交y轴于P点,则MN⊥y轴.连接CN.在△PAB与△NCA中,,∴△PAB∽△NCA,∴,设PA=x,则NA=PN﹣PA=3﹣x,设PB=y,∴,∴y=3x﹣x2=﹣(x﹣)2+,∵﹣1<0,≤x≤3,∴x=时,y有最大值,此时b=1﹣=﹣,x=3时,y有最小值0,此时b=1,∴b的取值范围是﹣≤b≤1.故选:B.【点睛】本题考查了相似三角形的判定与性质,二次函数的性质,得出y与x之间的函数解析式是解题的关键.7、D【分析】根据概率公式先分别求出摸出黑球、白球和红球的概率,再进行比较,即可得出答案.【详解】解:∵不透明的袋子中装有20个红球,2个黑球,1个白球,共有23个球,
∴摸出黑球的概率是,
摸出白球的概率是,
摸出红球的概率是,
∵<<,
∴从中任意摸出1个球,摸出红球的可能性最大;
故选:D.【点睛】本题考查了可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.8、C【分析】一次函数和二次函数与y轴交点坐标都是(0,1),然后再对a分a>0和a<0讨论即可.【详解】解:由题意知:与抛物线与y轴的交点坐标均是(0,1),故排除选项A;当a>0时,一次函数经过第一、二、三象限,二次函数开口向上,故其图像有可能为选项C所示,但不可能为选项B所示;当a<0时,一次函数经过第一、二、四象限,二次函数开口向下,不可能为为选项D所示;故选:C.【点睛】本题考查了一次函数与二次函数的图像关系,熟练掌握函数的图像与系数之间的关系是解决本类题的关键.9、B【分析】根据垂径定理可得,根据圆周角定理可得∠AOB=2∠ADC,进而可得答案.【详解】解:∵OA是⊙O的半径,弦BC⊥OA,∴,∴∠ADC=∠AOB=29°.故选B.【点睛】此题主要考查了圆周角定理和垂径定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10、B【分析】求出△ABC的三边长,再分别求出选项A、B、C、D中各三角形的三边长,根据三组对应边的比相等判定两个三角形相似,由此得到答案.【详解】如图,,AC=2,,A、三边依次为:,,1,∵,∴A选项中的三角形与不相似;B、三边依次为:、、1,∵,∴B选项中的三角形与相似;C、三边依次为:3、、,∵,∴C选项中的三角形与不相似;D、三边依次为:、、2,∵,∴D选项中的三角形与不相似;故选:B.【点睛】此题考查网格中三角形相似的判定,勾股定理,需根据勾股定理分别求每个三角形的边长,判断对应边的比是否相等是解题的关键.11、A【分析】根据孔庙和东山公园的位置,可知坐标轴的原点、单位长度、坐标轴的正方向,据此建立平面直角坐标系,从而可得体育场的位置.【详解】由题意可建立如下图所示的平面直角坐标系:平面直角坐标系中,原点O表示孔庙的位置,点A表示东山公园的位置,点B表示体育场的位置则点B的坐标为故选:A.【点睛】本题考查了已知点在平面直角坐标系中的位置求其坐标,依据题意正确建立平面直角坐标系是解题关键.12、C【分析】设点M的坐标为(),将代入y=-x+b中求出C点坐标,同理求出D点坐标,再根据两点之间距离公式即可求解.【详解】解:设点M的坐标为(),将代入y=-x+b中,得到C点坐标为(),将代入y=-x+b中,得到D点坐标为(),∵直线y=-x+b分别与x轴,y轴相交于点A,B,∴A点坐标(0,b),B点坐标为(b,0),∴AD×BC=,故选:C.【点睛】本题考查的是一次函数及反比例函数的性质,先设出M点坐标,用M点的坐标表示出C、D两点的坐标是解答此题的关键.二、填空题(每题4分,共24分)13、<【解析】分析:根据反比例函数的增减性即可得出答案.详解:∵图像在二、四象限,∴在每一个象限内,y随着x的增大而增大,∵1<2,∴.点睛:本题主要考查的是反比例函数的增减性,属于基础题型.对于反比例函数,当k>0时,在每一个象限内,y随着x的增大而减小;当k<0时,在每一个象限内,y随着x的增大而增大.14、(﹣1,﹣2)【分析】已知反比例函数的图像和经过原点的一次函数的图像都经过点(1,2),利用待定系数法先求出这两个函数的解析式,然后将两个函数的关系式联立求解即可.【详解】解:设过原点的直线L的解析式为,由题意得:∴∴把代入函数和函数中,得:∴求得另一解为∴点B的坐标为(-1,-1)故答案为(-1,-1).【点睛】本题考查的是用待定系数法求一次函数和反比例函数的解析式,解题的关键是找到函数图像上对应的点的坐标,构建方程或方程组进行解题.15、(1,3)【分析】首先根据直线AB求出点A和点B的坐标,结合旋转的性质可知点B′的横坐标等于OA与OB的长度之和,而纵坐标等于OA的长,进而得出B′的坐标.【详解】解:y=-x+4中,令x=0得,y=4;令y=0得,-x+4=0,解得x=3,∴A(3,0),B(0,4).
由旋转可得△AOB≌△AO′B′,∠O′AO=90°,
∴∠B′O′A=90°,OA=O′A,OB=O′B′,∴O′B′∥x轴,
∴点B′的纵坐标为OA长,即为3;横坐标为OA+O′B′=OA+OB=3+4=1.
故点B′的坐标是(1,3),
故答案为:(1,3).【点睛】本题主要考查了旋转的性质以及一次函数与坐标轴的交点问题,利用基本性质结合图形进行推理是解题的关键.16、或【分析】根据中位线的性质,得出的关系式,代入即可.【详解】根据中位线的性质故我们可得当均成立,故关系式正确∴故答案为:或.【点睛】本题考查了归纳总结的问题,掌握中位线的性质得出的关系式是解题的关键.17、﹣1.【解析】将x=1代入方程得关于a的方程,解之可得.【详解】解:将x=1代入方程得:2-1+a=0,解得:a=-1,故答案为:-1.【点睛】本题主要考查一元二次方程的解.18、1【解析】一元二次方程x1-1x-3=0的两个实数根分别为x1和x1,根据根与系数的关系即可得出答案.【详解】解:∵一元二次方程x1-1x-3=0的两个实数根分别为x1和x1,∴根据韦达定理,x1+x1=1,故答案为:1.【点睛】本题考查了根与系数的关系,难度不大,关键掌握x1,x1是方程x1+px+q=0的两根时,x1+x1=-p,x1x1=q.三、解答题(共78分)19、(1)证明见解析;(2)证明见解析;(3).【分析】(1)根据两边成比例夹角相等两三角形相似证明,然后利用平行线的判定定理即可.(2)欲证明PD是⊙O的切线,只要证明OD⊥PA即可解决问题;(3)连接CD.由(2)可知:PC=PD,由AM=MC,推出AM=2MO=2R,在Rt△AOD中,,可得,推出,推出,,由,可得,再利用全等三角形的性质求出MD即可解决问题;【详解】(1)证明:连接、、.∵,,∴,∴,∴,(2)∴,∴,,∵,∴,∴,∵,,∴,∴,∵,∴,∴,∴是的切线.(3)连接.由(1)可知:,∵,∴,在中,,∴,∴,∴,,∵,∴,∵是的中点,∴,∴点是的中点,∴,∵是的直径,∴,在中,∵,,∴,∵,∴,,∴,∴.【点睛】此题考查相似三角形的判定和性质、圆周角定理、切线的判定和性质,解题关键在于构造辅助线,相似三角形解决问题.20、(1)长为15米,宽为10米;(2)不可能达到200平方米;(3)【分析】(1)若鸡场面积150平方米,求鸡场的长和宽,关键是用一个未知数表示出长或宽,并注意去掉门的宽度;(2)求二次函数的最值问题,列出面积的关系式化为顶点式,确定函数最大值与200的大小关系,即可得到答案;(3)此题中首先设出鸡场的面积和宽,列函数式时要注意墙宽有三条道,所以鸡场的长要用篱笆的周长减去3个宽再加上大门的宽2米,再求函数式的最大值.【详解】(1)设宽为x米,则:x(33﹣2x+2)=150,解得:x1=10,x2=(不合题意舍去),∴长为15米,宽为10米;(2)设面积为w平方米,则:W=x(33﹣2x+2),变形为:,∴鸡场面积最大值为=153<200,即不可能达到200平方米;(3)设此时面积为Q平方米,宽为x米,则:Q=x(33﹣3x+2),变形得:Q=﹣3(x-)2+,∴此时鸡场面积最大值为.【点睛】此题考查一元二次方程的实际应用,二次函数最大值的确定方法,正确理解题意列得方程及二次函数关系式是解题的关键.21、(1)证明见解析;(2)BM=,理由见解析.【分析】(1)利用圆周角定理得到∠ADB=90°,然后就利用等角的余角相等得到结论;(2)如图,连接OD,DM,先计算出BD=8,OA=5,再证明Rt△CBD∽Rt△BAD,利用相似比得到BC=,取BC的中点M,连接DM、OD,如图,证明∠2=∠4得到∠ODM=90°,根据切线的判定定理可确定DM为⊙O的切线,然后计算BM的长即可.【详解】(1)∵AB为⊙O直径,∴∠ADB=90°,∴∠A+∠ABD=90°.∵∠ABC=90°,∴∠CBD+∠ABD=90°,∴∠A=∠CBD;(2)BM=.理由如下:如图,连接OD,DM,∵∠ADB=90°,AB=10,AD=6,∴BD==8,OA=5,∵∠A=∠CBD,∵Rt△CBD∽Rt△BAD,∴=,即=,解得BC=取BC的中点M,连接DM、OD,如图,∵DM为Rt△BCD斜边BC的中线,∴DM=BM,∵∠2=∠4,∵OB=OD,∴∠1=∠3,∴∠1+∠2=∠3+∠4=90°,即∠ODM=90°,∴OD⊥DM,∴DM为⊙O的切线,此时BM=BC=.【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理,掌握切线的判定定理及圆周角定理是关键.22、(1)在抢占市场份额的前提下利润要达到32万元,此时售价为8万元/台;(2)要使二期利润达到63万元,销售价应该为10万元/台.【分析】(1)先根据等量关系式:总利润=(售价-成本)销售量,列出函数关系式,再将代入函数关系式得出方程求解即得;(2)先根据等量关系式:总利润=(售价-新成本)销售量-7,列出函数关系式,再将代入函数关系式得出方程求解即得.【详解】(1)根据题意列出函数关系式如下:当时,,解得,.∵要抢占市场份额∴.答:在抢占市场份额的前提下利润要达到32万元,此时售价为8万元/台.(2)降低成本之后,每台的成本为5万元,每台利润为万元,销售量.依据题意得,当时,,解得,.∵要继续保持扩大销售量的战略∴答:要使二期利润达到63万元,销售价应该为10万元/台.【点睛】本题考查函数解析式及解一元二次方程,解题关键是正确找出等量关系式:总利润=(售价-成本)销售量.23、(1)k≤9;(2)2【分析】(1)根据判别式的意义得到Δ=(-6)2-4k=36-4k≥0,然后解不等式即可;(2)根据根与系数的关系得到x1+x2=6,x1x2=k,再利用=3得到=3,得到满足条件的k的值.【详解】(1)∵方程有两根∴Δ=(-6)2-4k=36-4k≥0∴k≤9;(2)由已知可得,x1+x2=6,x1x2=k∴+==3∴=3∴k=2<9∴当+=3时,k的值为2.【点睛】本题考查了根与系数的关系:若x1,x2是一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- (新教材)2026年青岛版八年级上册数学 3.4 分式方程 课件
- 2025年贝类饲料供应合同协议
- 城市绿地生态功能评估模型
- 房地产 -2025年第四季度奥克兰公寓数据 Q4 2025 Auckland Apartment Figures
- 国际贸易规则调整
- 试验设计题库及答案解析
- 2026 年中职经管类(经济基础)试题及答案
- 基于AIGC的短视频交易平台
- 办公场所租赁用途变更合同协议2025
- 2024年中考道德与法治(徐州)第二次模拟考试(含答案)
- 2025年10月自考04184线性代数经管类试题及答案含评分参考
- 国开2025年秋《心理学》形成性考核练习1-6答案
- 科技研发项目管理办法
- 267条表情猜成语【动画版】
- 电力工程公司积成绩效考核管理体系制度规定
- 银行IT服务管理事件管理流程概要设计
- 地图文化第三讲古代测绘课件
- LY/T 2230-2013人造板防霉性能评价
- GB/T 34891-2017滚动轴承高碳铬轴承钢零件热处理技术条件
- 国家开放大学电大本科《理工英语4》2022-2023期末试题及答案(试卷号:1388)
- 突发公共卫生事件处置记录表
评论
0/150
提交评论