湖南省汨罗市沙溪中学2022-2023学年九年级数学第一学期期末考试模拟试题含解析_第1页
湖南省汨罗市沙溪中学2022-2023学年九年级数学第一学期期末考试模拟试题含解析_第2页
湖南省汨罗市沙溪中学2022-2023学年九年级数学第一学期期末考试模拟试题含解析_第3页
湖南省汨罗市沙溪中学2022-2023学年九年级数学第一学期期末考试模拟试题含解析_第4页
湖南省汨罗市沙溪中学2022-2023学年九年级数学第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数15321则这个队队员年龄的众数和中位数分别是()A.15,16 B.15,15 C.15,15.5 D.16,152.已知关于x的一元二次方程x2﹣4x+c=0的一个根为1,则另一个根是()A.5 B.4 C.3 D.23.如图,A、B、C、D是⊙O上的四点,BD为⊙O的直径,若四边形ABCO是平行四边形,则∠ADB的大小为()A.30° B.45° C.60° D.75°4.四张背面完全相同的卡片,正面分别画有平行四边形、菱形、等腰梯形、圆,现从中任意抽取一张,卡片上所画图形恰好是轴对称图形的概率为()A.1 B. C. D.5.圆锥的底面半径为2,母线长为6,它的侧面积为()A. B. C. D.6.方程x2+4x+4=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个实数根 D.没有实数根7.一个菱形的边长为,面积为,则该菱形的两条对角线的长度之和为()A. B. C. D.8.如果,、分别对应、,且,那么下列等式一定成立的是()A. B.的面积:的面积C.的度数:的度数 D.的周长:的周长9.如图在中,弦于点于点,若则的半径的长为()A. B. C. D.10.有n支球队参加篮球比赛,共比赛了15场,每两个队之间只比赛一场,则下列方程中符合题意的是()A.n(n﹣1)=15 B.n(n+1)=15C.n(n﹣1)=30 D.n(n+1)=30二、填空题(每小题3分,共24分)11.一元二次方程的解是_________.12.在△ABC中,若∠A,∠B满足|cosA-|+(sinB-)2=0,则∠C=_________.13.如图,小明同学用自制的直角三角形纸板DEF测量树AB的高度,他调整自己的位置,使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=10m,则AB=_____m.14.如图,在矩形ABCD中,如果AB=3,AD=4,EF是对角线BD的垂直平分线,分别交AD,BC于点EF,则ED的长为____________________________.15.如图,在直角三角形中,,是边上一点,以为边,在上方作等腰直角三角形,使得,连接.若,,则的最小值是_______.16.已知三点A(0,0),B(5,12),C(14,0),则△ABC内心的坐标为____.17.将边长分别为,,的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______.18.在平面直角坐标系中,抛物线y=x2如图所示,已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4,过点A4作A4A5∥x轴交抛物线于点A5,则点A5的坐标为_____.三、解答题(共66分)19.(10分)学校决定每班选取名同学参加全国交通安全日细节关乎生命安全文明出行主题活动启动仪式,班主任决定从名同学(小明、小山、小月、小玉)中通过抽签的方式确定名同学去参加该活动.抽签规则:将名同学的姓名分别写在张完全相同的卡片正面,把张卡片的背面朝上,洗匀后放在桌子上,王老师先从中随机抽取一张卡片,记下名字,再从剩余的张卡片中随机抽取一张,记下名字.(1)小刚被抽中是___事件,小明被抽中是____事件(填不可能、必然、随机),第一次抽取卡片抽中是小玉的概率是______;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出小月被抽中的概率.20.(6分)某化工厂要在规定时间内搬运1200吨化工原料.现有,两种机器人可供选择,已知型机器人比型机器人每小时多搬运30吨型,机器人搬运900吨所用的时间与型机器人搬运600吨所用的时间相等.(1)求两种机器人每小时分别搬运多少吨化工原料.(2)该工厂原计划同时使用这两种机器人搬运,工作一段时间后,型机器人又有了新的搬运任务需离开,但必须保证这批化工原料在11小时内全部搬运完毕.问型机器人至少工作几个小时,才能保证这批化工原料在规定的时间内完成?21.(6分)如图,是的直径,点在上且,连接,过点作交的延长线于点.求证:是的切线;

22.(8分)解方程:x2﹣4x﹣12=1.23.(8分)已知:如图,AB为⊙O的直径,OD∥AC.求证:点D平分.24.(8分)举世瞩目的港珠澳大桥已于2018年10月24日正式通车,这座大桥是世界上最长的跨海大桥,被英国《卫报》誉为“新世界七大奇迹”,车辆经过这座大桥收费站时,从已开放的4个收费通道A、B、C、D中可随机选择其中一个通过.(1)一辆车经过收费站时,选择A通道通过的概率是.(2)用树状图或列表法求两辆车经过此收费站时,选择不同通道通过的概率.25.(10分)阅读下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:,等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知,两数相除,同号得正,异号得负,其字母表达式为:(1)若,,则,若,,则;(2)若,,则,若,,则.反之,(1)若,则或(3)若,则__________或_____________.根据上述规律,求不等式,的解集,方法如下:由上述规律可知,不等式,转化为①或②解不等式组①得,解不等式组②得.∴不等式,的解集是或.根据上述材料,解决以下问题:A、求不等式的解集B、乘法法则与除法法则类似,请你类比上述材料内容,运用乘法法则,解决以下问题:求不等式的解集.26.(10分)已知函数解析式为y=(m-2)(1)若函数为正比例函数,试说明函数y随x增大而减小(2)若函数为二次函数,写出函数解析式,并写出开口方向(3)若函数为反比例函数,写出函数解析式,并说明函数在第几象限

参考答案一、选择题(每小题3分,共30分)1、C【分析】由题意直接根据众数和中位数的定义求解可得.【详解】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,∴中位数为=15.5岁,故选:C.【点睛】本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.2、C【解析】根据根与系数的关系可得出两根之和为4,从而得出另一个根.【详解】设方程的另一个根为m,则1+m=4,∴m=3,故选C.【点睛】本题考查了一元二次方程根与系数的关系.解答关于x的一元二次方程x2-4x+c=0的另一个根时,也可以直接利用根与系数的关系x1+x2=-解答.3、A【解析】解:∵四边形ABCO是平行四边形,且OA=OC,∴四边形ABCO是菱形,∴AB=OA=OB,∴△OAB是等边三角形,∴∠AOB=60°,∵BD是⊙O的直径,∴点B、D、O在同一直线上,∴∠ADB=∠AOB=30°故选A.4、B【解析】以上图形中轴对称图形有菱形、等腰梯形、圆,所以概率为3÷4=.故选B5、B【分析】根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.【详解】根据圆锥的侧面积公式:rl=×2×6=12,故选:B.【点睛】本题主要考查了圆锥侧面积公式.熟练地应用圆锥侧面积公式求出是解决问题的关键.6、B【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.【详解】解:∵△=b2﹣4ac=16﹣16=0∴方程有两个相等的实数根.故选:B.【点睛】本题考查了一元二次方程根的判别式的应用.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7、C【分析】如图,根据菱形的性质可得,,,再根据菱形的面积为,可得①,由边长结合勾股定理可得②,由①②两式利用完全平方公式的变形可求得,进行求得,即可求得答案.【详解】如图所示:四边形是菱形,,,,面积为,①菱形的边长为,②,由①②两式可得:,,,即该菱形的两条对角线的长度之和为,故选C.【点睛】本题考查了菱形的性质,菱形的面积,勾股定理等,熟练掌握相关知识是解题的关键.8、D【解析】相似三角形对应边的比等于相似比,面积之比等于相似比的平方,对应角相等.【详解】根据相似三角形性质可得:A:BC和DE不是对应边,故错;B:面积比应该是,故错;C:对应角相等,故错;D:周长比等于相似比,故正确.故选:D【点睛】考核知识点:相似三角形性质.理解基本性质是关键.9、C【分析】根据垂径定理求得OD,AD的长,并且在直角△AOD中运用勾股定理即可求解.【详解】解:弦,于点,于点,四边形是矩形,,,,;故选:.【点睛】本题考查了垂径定理、勾股定理、矩形的判定与性质;利用垂径定理求出AD,AE的长是解决问题的关键.10、C【解析】由于每两个队之间只比赛一场,则此次比赛的总场数为:场.根据题意可知:此次比赛的总场数=15场,依此等量关系列出方程即可.【详解】试题解析:∵有支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为∴共比赛了15场,即故选C.二、填空题(每小题3分,共24分)11、x1=0,x2=4【分析】用因式分解法求解即可.【详解】∵,∴x(x-4)=0,∴x1=0,x2=4.故答案为x1=0,x2=4.【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.12、75°【解析】根据绝对值及偶次方的非负性,可得出cosA及sinB的值,从而得出∠A及∠B的度数,利用三角形的内角和定理可得出∠C的度数.【详解】∵|cosA-|+(sinB-)2=0,∴cosA=,sinB=,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案为75°.【点睛】本题考查了特殊角的三角函数值及非负数的性质,解答本题的关键是得出cosA及sinB的值,另外要求我们熟练掌握一些特殊角的三角函数值.13、6.5【分析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上AC的长即可求得树AB的高.【详解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴,∵DE=40cm=0.4m,EF=20cm=0.2m,CD=10m,∴,解得:BC=5(m),∵AC=1.5m,∴AB=AC+BC=1.5+5=6.5(m),故答案为:6.5【点睛】本题考查相似三角形的应用,如果两个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;熟练掌握相似三角形的判定定理是解题关键.14、【分析】连接EB,构造直角三角形,设AE为,则,利用勾股定理得到有关的一元一次方程,即可求出ED的长.【详解】连接EB,

∵EF垂直平分BD,

∴ED=EB,

设,则,

在Rt△AEB中,

即:,

解得:.∴,

故答案为:.【点睛】本题考查了矩形的性质,线段的垂直平分线的性质和勾股定理,正确根据勾股定理列出方程是解题的关键.15、【分析】过点E作EH⊥直线AC于点H,利用AAS定理证明△BCD≌△DEH,设CD=x,利用勾股定理求,然后利用配方法求其最小值,从而使问题得解.【详解】解:过点E作EH⊥直线AC于点H,由题意可知:∠EDA+∠BDC=90°,∠BDC+∠DBC=90°∴∠EDA=∠DBC又∵∠C=∠EHD,BD=DE∴△BCD≌△DEH∴HD=BC=4设CD=x,则EH=xAH=∴在Rt△AEH中,当x=时,有最小值为∴AE的最小值为故答案为:【点睛】本题考查全等三角形的判定,勾股定理及二次函数求最值,综合性较强,正确添加辅助线是本题的解题关键.16、(6,4).【分析】作BQ⊥AC于点Q,由题意可得BQ=12,根据勾股定理分别求出BC、AB的长,继而利用三角形面积,可得△OAB内切圆半径,过点P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,设AD=AF=x,则CD=CE=14-x,BF=13-x,BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解之求出x的值,从而得出点P的坐标,即可得出答案.【详解】解:如图,过点B作BQ⊥AC于点Q,则AQ=5,BQ=12,∴AB=,CQ=AC-AQ=9,∴BC=设⊙P的半径为r,根据三角形的面积可得:r=过点P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,设AD=AF=x,则CD=CE=14-x,BF=13-x,∴BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解得:x=6,∴点P的坐标为(6,4),故答案为:(6,4).【点睛】本题主要考查勾股定理、三角形的内切圆半径公式及切线长定理,根据三角形的内切圆半径公式及切线长定理求出点P的坐标是解题的关键.17、【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如图所示,∵四边形MEGH为正方形,∴∴△AEN△AHG∴NE:GH=AE:AG∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9∴NE=同理可求BK=梯形BENK的面积:∴阴影部分的面积:故答案为:.【点睛】本题主要考查的知识点是图形面积的计算以及相似三角形判定及其性质,根据相似的性质求出相应的边长是解答本题的关键.18、(﹣3,9)【分析】根据二次函数性质可得出点A1的坐标,求得直线A1A2为y=x+2,联立方程求得A2的坐标,即可求得A3的坐标,同理求得A4的坐标,即可求得A5的坐标.【详解】∵A点坐标为(1,1),∴直线OA为y=x,A1(﹣1,1),∵A1A2∥OA,∴直线A1A2为y=x+2,解得:或,∴A2(2,4),∴A3(﹣2,4),∵A3A4∥OA,∴直线A3A4为y=x+6,解得:或,∴A4(3,9),∴A5(﹣3,9),故答案为:(﹣3,9).【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.三、解答题(共66分)19、(1)不可能;随机;;(2).【分析】(1)根据随机事件和不可能事件的概念及概率公式解答可得;

(2)列举出所有情况,看所求的情况占总情况的多少即可.【详解】(1)小刚不在班主任决定的名同学(小明、小山、小月、小玉)之中,所以“小刚被抽中”是不可能事件;“小明被抽中”是随机事件,第一次抽取卡片有4种等可能结果,其中小玉被抽中的有1种结果,所以第一次抽取卡片抽中是小玉的概率是;故答案为:不可能、随机、;(2)解:A表示小明,B表示小山,C表示小月,D表示小玉,则画树状图为:共有12种等可能的结果数,其中抽到C有6种,∴P(抽中小月)=.【点睛】本题主要考查了树状图或列表法求概率,列表法可以不重复不遗漏地列出所有可能的结果,适用于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20、(1)型机器人每小时搬运90吨化工原料,型机器人每小时搬运60吨化工原料;(2)A型机器人至少工作6小时,才能保证这批化工原料在规定的时间内完成.【分析】(1)设B型机器人每小时搬运x吨化工原料,则A型机器人每小时搬运(x+30)吨化工原料,根据A型机器人搬运900吨所用的时间与B型机器人搬运600吨所用的时间相等建立方程求出其解就可以得出结论.

(2)设A型机器人工作t小时,根据这批化工原料在11小时内全部搬运完毕列出不等式求解.【详解】解:(1)设型机器人每小时搬运吨化工原料,则型机器人每小时搬运吨化工原料,根据题意,得,解得.经检验,是所列方程的解.当时,.答:型机器人每小时搬运90吨化工原料,型机器人每小时搬运60吨化工原料;(2)设型机器人工作小时,根据题意,得,解得.答:A型机器人至少工作6小时,才能保证这批化工原料在规定的时间内完成.【点睛】本题考查的是分式方程应用题和列不等式求解问题,找相等关系式是解题关键,(1)根据A型机器人搬运900千克所用的时间与B型机器人搬运600千克所用的时间相等建立方程,分式方程应用题的解需要双检,一检是否是方程的根,二检是否符合题意;(2)总工作量-A型机器人的工作量≤B型机器人11小时的工作量,列不等式求解.21、见解析【分析】连结,由,根据圆周角定理得,而,则,可判断,由于,所以,然后根据切线的判定定理得到是的切线;【详解】解:证明:连结,如图,,,,,,,,,是的切线;

【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.22、x1=6,x2=﹣2.【解析】试题分析:用因式分解法解方程即可.试题解析:或所以23、见解析.【分析】连接BC,根据圆周角定理求出∠ACB=90°,求出OD⊥BC,根据垂径定理求出即可.【详解】证明:连接CB,∵AB为⊙O的直径,∴∠ACB=90°,∵OD∥AC,∴∠OEB=∠ACB=90°,即OD⊥BC,∵OD过O,∴点D平分.【点睛】本题考查了圆周角定理和垂径定理,能正确运用定理进行推理是解此题的关键.24、(1);(2).【解析】(1)根据概率公式即可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论