吉林省长春市第103中学2022年数学九年级第一学期期末质量检测模拟试题含解析_第1页
吉林省长春市第103中学2022年数学九年级第一学期期末质量检测模拟试题含解析_第2页
吉林省长春市第103中学2022年数学九年级第一学期期末质量检测模拟试题含解析_第3页
吉林省长春市第103中学2022年数学九年级第一学期期末质量检测模拟试题含解析_第4页
吉林省长春市第103中学2022年数学九年级第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是()A.6 B.12 C.24 D.不能确定2.在平面直角坐标系中,平移二次函数的图象能够与二次函数的图象重合,则平移方式为()A.向左平移个单位,向下平移个单位B.向左平移个单位,向上平移个单位C.向右平移个单位,向下平移个单位D.向右平移个单位,向上平移个单位3.我国民间,流传着许多含有吉祥意义的文字图案,表示对幸福生活的向往,良辰佳节的祝贺.比如下列图案分别表示“福”、“禄”、“寿”、“喜”,其中是中心对称图形的是()A.①③ B.①④ C.②③ D.②④4.设A(﹣2,y1)、B(1,y2)、C(2,y3)是双曲线上的三点,则()A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y25.如图,正六边形内接于,连接.则的度数是()A. B. C. D.6.如图物体由两个圆锥组成,其主视图中,.若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A.2 B. C. D.7.如图,在中,,,,则的值是()A. B. C. D.8.按如下方法,将△ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形

②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1:2

④△ABC与△DEF的面积比为4:1.A.1 B.2 C.3 D.49.在Rt△ABC中,∠C=90°,若,则的值为()A.1 B. C. D.10.下列命题正确的是()A.对角线相等四边形是矩形B.相似三角形的面积比等于相似比C.在反比例函数图像上,随的增大而增大D.若一个斜坡的坡度为,则该斜坡的坡角为11.关于x的一元二次方程有实数根,则整数a的最大值是()A.2 B.1 C.0 D.-112.如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面AB的宽为8cm,水面最深的地方高度为2cm,则该输水管的半径为()A.3cm B.5cm C.6cm D.8cm二、填空题(每题4分,共24分)13.从,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____.14.如图,在四边形中,,,,分别为,的中点,连接,,.,平分,,的长为__.15.在不透明的袋中装有大小和质地都相同的个红球和个白球,某学习小组做“用频率估计概率"的试验时,统计了摸到红球出现的频率并绘制了折线统计图,则白球可能有_______个.16.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-,y1),(,y2)是抛物线上两点,则y1<y2,其中结论正确的是________.17.如图,△ABC内接于⊙O,∠ACB=35º,则∠OAB=º.18.函数和在第一象限内的图象如图,点是的图象上一动点,轴于点,交的图象于点;轴于点,交的图象于点,则四边形的面积为______.三、解答题(共78分)19.(8分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.20.(8分)如图,在正方形ABCD中,点M、N分别在AB、BC边上,∠MDN=45°.(1)如图1,DN交AB的延长线于点F.求证:;(2)如图2,过点M作MP⊥DB于P,过N作NQ⊥BD于,若,求对角线BD的长;(3)如图3,若对角线AC交DM,DF分别于点T,E.判断△DTN的形状并说明理由.21.(8分)已知x2+xy+y=12,y2+xy+x=18,求代数式3x2+3y2﹣2xy+x+y的值.22.(10分)为弘扬遵义红色文化,传承红色文化精神,某校准备组织学生开展研学活动.经了解,有A.遵义会议会址、B.苟坝会议会址、C.娄山关红军战斗遗址、D.四渡赤水纪念馆共四个可选择的研学基地.现随机抽取部分学生对基地的选择进行调查,每人必须且只能选择一个基地.根据调查结果绘制如下不完整的条形统计图和扇形统计图.(1)统计图中______,______;(2)若该校有1500名学生,请估计选择基地的学生人数;(3)某班在选择基地的6名学生中有4名男同学和2名女同学,需从中随机选出2名同学担任“小导游”,请用树状图或列举法求这2名同学恰好是一男一女的概率.23.(10分)某商贸公司以每千克元的价格购进一种干果,计划以每千克元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量(千克)与每千克降价(元)之间满足一次函数关系,其图象如图所示:.(1)求与之间的函数关系式;(2)函数图象中点表示的实际意义是;(3)该商贸公司要想获利元,则这种干果每千克应降价多少元?24.(10分)如图,已知点A,B的坐标分别为(4,0),(3,2).(1)画出△AOB关于原点O对称的图形△COD;(2)将△AOB绕点O按逆时针方向旋转90°得到△EOF,画出△EOF;(3)点D的坐标是,点F的坐标是,此图中线段BF和DF的关系是.25.(12分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连接AC,过上一点E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG.(1)求证:EG是⊙O的切线;(2)延长AB交GE的延长线于点M,若AH=2,,求OM的长.26.关于x的一元二次方程(k+1)x2﹣3x﹣3k﹣2=0有一个根为﹣1,求k的值及方程的另一个根.

参考答案一、选择题(每题4分,共48分)1、B【分析】由矩形ABCD可得:S△AOD=S矩形ABCD,又由AB=15,BC=20,可求得AC的长,则可求得OA与OD的长,又由S△AOD=S△APO+S△DPO=OA•PE+OD•PF,代入数值即可求得结果.【详解】连接OP,如图所示:∵四边形ABCD是矩形,∴AC=BD,OA=OC=AC,OB=OD=BD,∠ABC=90°,S△AOD=S矩形ABCD,∴OA=OD=AC,∵AB=15,BC=20,∴AC===25,S△AOD=S矩形ABCD=×15×20=75,∴OA=OD=,∴S△AOD=S△APO+S△DPO=OA•PE+OD•PF=OA•(PE+PF)=×(PE+PF)=75,∴PE+PF=1.∴点P到矩形的两条对角线AC和BD的距离之和是1.故选B.【点睛】本题考查了矩形的性质、勾股定理、三角形面积.熟练掌握矩形的性质和勾股定理是解题的关键.2、D【解析】二次函数y=x1+4x+3=(x+1)1-1,将其向右平移1个单位,再向上平移1个单位得到二次函数y=x1.故选D.点睛:抛物线的平移时解析式的变化规律:左加右减,上加下减.3、D【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【详解】解:①不是中心对称图形,故本选项不合题意;②是中心对称图形,故本选项符合题意;③不是中心对称图形,故本选项不合题意;④是中心对称图形,故本选项符合题意;故选:D.【点睛】本题考查了中心对称图形的定义,熟悉掌握概念是解题的关键4、B【分析】将A、B、C的横坐标代入双曲线,求出对应的横坐标,比较即可.【详解】由题意知:A(﹣2,y1)、B(1,y2)、C(2,y3)在双曲线上,将代入双曲线中,得∴.故选B.【点睛】本题主要考查了双曲线函数的性质,正确掌握双曲线函数的性质是解题的关键.5、C【解析】根据正六边形的内角和求得∠BCD,然后根据等腰三角形的性质即可得到结论.【详解】解:∵在正六边形ABCDEF中,∠BCD==120°,BC=CD,∴∠CBD=30°,

故选:C.【点睛】本题考查的是正多边形和圆、等腰三角形的性质,三角形的内角和,熟记多边形的内角和是解题的关键.6、D【分析】先证明△ABD为等腰直角三角形得到∠ABD=45°,BD=AB,再证明△CBD为等边三角形得到BC=BD=AB,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到下面圆锥的侧面积.【详解】∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD=AB,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD=AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,∴下面圆锥的侧面积=×1=.故选D.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.7、C【分析】利用勾股定理求得AB的长,然后利用三角函数定义求解.【详解】解:在直角△ABC中,AB===5,则sinA==.故选C.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.8、C【分析】根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【详解】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的,∴△ABC与△DEF的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC与△DEF的面积比为4:1.故选C.【点睛】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.9、B【分析】根据互余角的三角函数间的关系:sin(90°-α)=cosα,cos(90°-α)=sinα解答即可.【详解】解:解:∵在△ABC中,∠C=90°,

∴∠A+∠B=90°,

∴sinA=cosB=,

故选:B.【点睛】本题考查了互余两角的三角函数关系式,掌握当∠A+∠B=90°时,sinA=cosB是解题的关键.10、D【分析】根据矩形的判断定理、相似三角形的性质、反比例函数的性质、坡度的定义及特殊的三角函数值解答即可.【详解】对角线相等的平行四边形是矩形,故A错误;相似三角形的面积比等于相似比的平方,故B错误;在反比例函数图像上,在每个象限内,随的增大而增大,故C错误;若一个斜坡的坡度为,则tan坡角=,该斜坡的坡角为,故D正确.故选:D【点睛】本题考查的是矩形的判断定理、相似三角形的性质、反比例函数的性质、坡度的定义及特殊的三角函数值,熟练的掌握各图形及函数的性质是关键.11、C【分析】根据一元二次方程的根的判别式可得答案.【详解】解:∵关于x的一元二次方程有实数根,∴.即a的取值范围是且.∴整数a的最大值为0.故选C.【点睛】本题考查了一元二次方程,熟练掌握根的判别式与根的关系是解题关键.12、B【分析】先过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求出r的值.【详解】解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=AB=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.∴该输水管的半径为5cm;故选:B.【点睛】此题主要考查垂径定理,解题的关键是熟知垂径定理及勾股定理的运用.二、填空题(每题4分,共24分)13、【解析】分析:由题意可知,从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个,∴抽到有理数的概率是:.故答案为.点睛:知道“从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”并能识别其中“0,3.14,6”是有理数是解答本题的关键.14、.【分析】根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,由此即可证明BM=MN.再证明∠BMN=90°,根据BN2=BM2+MN2即可解决问题.【详解】在中,、分别是、的中点,,,在中,是中点,,,,,平分,,,,,,,,,.故答案为.【点睛】本题考查了三角形中位线定理、直角三角形斜边中线定理、勾股定理等知识,解题的关键是灵活应用:三角形的中位线平行于第三边,并且等于第三边的一半.15、6【分析】从表中的统计数据可知,摸到红球的频率稳定在0.33左右,根据红球的概率公式得到相应方程求解即可;【详解】由统计图,知摸到红球的频率稳定在0.33左右,∴,经检验,n=6是方程的根,故答案为6.【点睛】此题主要考查频率与概率的相关计算,熟练掌握,即可解题.16、②④【解析】由抛物线开口方向得到a<0,有对称轴方程得到b=-2a>0,由∵抛物线与y轴的交点位置得到c>0,则可对①进行判断;由b=-2a可对②进行判断;利用抛物线的对称性可得到抛物线与x轴的另一个交点为(3,0),则可判断当x=2时,y>0,于是可对③进行判断;通过比较点(-,y1)与点(,y2)到对称轴的距离可对④进行判断.【详解】:∵抛物线开口向下,

∴a<0,

∵抛物线的对称轴为直线x=-=1,

∴b=-2a>0,

∵抛物线与y轴的交点在x轴上方,

∴c>0,

∴abc<0,所以①错误;

∵b=-2a,

∴2a+b=0,所以②正确;

∵抛物线与x轴的一个交点为(-1,0),抛物线的对称轴为直线x=1,

∴抛物线与x轴的另一个交点为(3,0),

∴当x=2时,y>0,

∴4a+2b+c>0,所以③错误;

∵点(-,y1)到对称轴的距离比点(,y2)对称轴的距离远,

∴y1<y2,所以④正确.

故答案为:②④.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.17、55【解析】分析:∵∠ACB与∠AOB是所对的圆周角和圆心角,∠ACB=35º,∴∠AOB=2∠ACB=70°.∵OA=OB,∴∠OAB=∠OBA=.18、3【解析】根据反比例函数系数k的几何意义可分别求得△OBD、△OAC、矩形PDOC的面积,据此可求出四边形PAOB的面积.【详解】解:如图,

∵A、B是反比函数上的点,

∴S△OBD=S△OAC=,∵P是反比例函数上的点,

∴S矩形PDOC=4,

∴S四边形PAOB=S矩形PDOC-S△ODB--S△OAC=4--=3,故答案是:3.【点睛】本题考查的是反比例函数综合题,熟知反比例函数中系数k的几何意义是解答此题的关键.三、解答题(共78分)19、(1)60°;(2)证明略;(3)【分析】(1)根据∠ABC与∠D都是劣弧AC所对的圆周角,利用圆周角定理可证出∠ABC=∠D=60°;

(2)根据AB是⊙O的直径,利用直径所对的圆周角是直角得到∠ACB=90°,结合∠ABC=60°求得∠BAC=30°,从而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切线;

(3)连结OC,证出△OBC是等边三角形,算出∠BOC=60°且⊙O的半径等于4,可得劣弧AC所对的圆心角∠AOC=120°,再由弧长公式加以计算,可得劣弧AC的长.【详解】(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线;(3)如图,连接OC,∵OB=OC,∠ABC=60°,∴△OBC是等边三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的长为==.【点睛】本题考查了切线长定理及弧长公式,熟练掌握定理及公式是解题的关键.20、(1)证明见解析;(2);(3)是等腰直角三角形,理由见解析【分析】(1)连接BD,根据正方形的性质可证出,得到,即可得到结果;(2)根据正方形ABCD,可得到,,可推出,得到,于是推出,得到,进而得出,代入已知条件即可;(3)由已知条件证出,可得,再根据,得到,所以,代入条件可求得结果.【详解】解:(1)连接BD∵四边形ABCD是正方形∴∴又∵∴又∵∴∴∴(2)∵正方形ABCD∴,又∵∴又∵,∴∴∴∴∴又∵∴∴故答案为:(3)是等腰直角三角形,理由如下:由,,∴又∵∴∴又∵∴∴是等腰直角三角形【点睛】本题主要考查了正方形的综合应用,结合相似三角形的性质应用进行题目解答,找到每个量之间的关系关键.21、或【分析】分别将已知的两个等式相加和相减,得到(x+y)2+(x+y)=30,(x+y-1)(x﹣y)=﹣6,即可求得x、y的值,再求代数式的值即可.【详解】解:由x2+xy+y=12①,y2+xy+x=18②,①+②,得(x+y)2+(x+y)=30③,①﹣②,得(x+y-1)(x﹣y)=﹣6④,由③得(x+y+6)(x+y﹣5)=0,∴x+y=﹣6或x+y=5⑤,∴将⑤分别代入④得,x﹣y=或x﹣y=﹣,∴或当时,当时,

故答案为:或【点睛】本题考查解二元一次方程组;理解题意,将已知式子进行合理的变形,再求二元一次方程组的解是解题的关键.22、(1)56,15;(2)555;(3)【分析】(1)根据C基地的调查人数和所在的百分比即可求出调查总人数,再乘调查A基地人数所占的百分比即可求出m,用调查D基地的人数除以调查总人数即可求出n;(2)先求出调查B基地人数所占的百分比,再乘1500即可;(3)根据题意,列出表格,然后利用概率公式求概率即可.【详解】(1)调查总人数为:40÷20%=200(人)则m=200×28%=56(人)n%=30÷200×100%=15%∴n=15.故答案为:56;15(2)(人)答:选择基地的学生人数为555人.(3)根据题意列表如下:男1男2男3男4女1女2男1(男1,男2)(男1,男3)(男1,男4)(男1,女1)(男1,女2)男2(男2,男1)(男2,男3)(男2,男4)(男2,女1)(男2,女2)男3(男3,男1)(男3,男2)(男3,男4)(男3,女1)(男3,女2)男4(男4,男1)(男4,男2)(男4,男3)(男4,女1)(男4,女2)女1(女1,男1)(女1,男2)(女1,男3)(女1,男4)(女1,女2)女2(女2,男1)(女2,男2)(女2,男3)(女2,男4)(女2,女1)由上表可知,共有30种等可能的结果,其中“1男1女”的结果有16种.所以:(1男1女).【点睛】此题考查的是条形统计图、扇形统计图和求概率问题,掌握结合条形统计图和扇形统计图得出有用信息和利用列表法求概率是解决此题的关键.23、(1)y=10x+100;(2)当x为0,y=100,即这种干果没有降价,以每千克60元的价格销售时,销售量是100千克;(3)商贸公司要想获利2090元,则这种干果每千克应降价9元.【分析】(1)首先设一次函数解析式为:y=kx+b,然后根据函数图象,将两组对应值代入解析式即可得解;(2)结合点和函数图象即可得出其表示的实际意义;(3)根据题意列出一元二次方程,求解即可【详解】(1)设一次函数解析式为:y=kx+b当x=2,y=120;当x=4,y=140;∴,解得:,∴y与x之间的函数关系式为y=10x+100;(2)函数图象中点A表示的实际意义是当x为0,y=100,即这种干果没有降价,以每千克60元的价格销售时,销售量是100千克.(3)由题意得:(60﹣40﹣x)(10x+100)=2090,整理得:x2﹣10x+9=0,解得:x1=1.x2=9,∵让顾客得到更大的实惠,∴x=9,答:商贸公司要想获利2090元,则这种干果每千克应降价9元..【点睛】此题主要考查一次函数图象的实际应用以及一元二次方程的实际应用,解题关键是根据题意,列出关

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论