2022年广东省珠海市香洲区5月份数学八年级第一学期期末检测试题含解析_第1页
2022年广东省珠海市香洲区5月份数学八年级第一学期期末检测试题含解析_第2页
2022年广东省珠海市香洲区5月份数学八年级第一学期期末检测试题含解析_第3页
2022年广东省珠海市香洲区5月份数学八年级第一学期期末检测试题含解析_第4页
2022年广东省珠海市香洲区5月份数学八年级第一学期期末检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.若三角形三个内角度数之比为2:3:7,则这个三角形一定是()A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰直角三角形2.若3n+3n+3n=,则n=()A.﹣3 B.﹣2 C.﹣1 D.03.在一次数学课上,张老师出示了一道题的已知条件:如图四边形ABCD中,AD=CD,AB=CB,要求同学们写出正确结论.小明思考后,写出了四个结论如下:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD;④线段BD,AC互相平分,其中小明写出的结论中正确的有()个A.1 B.2C.3 D.44.小明不慎将一个三角形玻璃摔碎成如图所示的四块,现要到玻璃店配一个与原来一样大小的三角形玻璃,你认为应带去的一块是()A.第1块 B.第2块 C.第3块 D.第4块5.如图,中,,,则的度数为()A. B. C. D.6.到三角形三个顶点距离相等的点是()A.三条角平分线的交点 B.三边中线的交点C.三边上高所在直线的交点 D.三边的垂直平分线的交点7.“某市为处理污水,需要铺设一条长为4000米的管道,为了尽量减少施工对交通所造成的影响,实际施工时×××××.设原计划每天铺设管道x米,则可得方程.”根据此情境,题中用“×××××”表示得缺失的条件,应补为()A.每天比原计划多铺设10米,结果延期20天才完成任务B.每天比原计划少铺设10米,结果延期20天才完成任务C.每天比原计划多铺设10米,结果提前20天完成任务D.每天比原计划少铺设10米,结果提前20天完成任务8.下列命题是真命题的是()A.直角三角形中两个锐角互补 B.相等的角是对顶角C.同旁内角互补,两直线平行 D.若,则9.禽流感病毒的形状一般为球形,直径大约为0.000000102米,数0.000000102用科学记数法表示为()A. B. C. D.10.如果,那么代数式的值为()A.-3 B.-1 C.1 D.311.一个多边形的每个外角都等于60°,则这个多边形的边数为()A.8 B.7 C.6 D.512.若把分式中的x和y都扩大10倍,那么分式的值()A.扩大10倍 B.不变 C.缩小10倍 D.缩小20倍二、填空题(每题4分,共24分)13.如图,D为△ABC外一点,BD⊥AD,BD平分△ABC的一个外角,∠C=∠CAD,若AB=5,BC=3,则BD的长为_______.14.点在第四象限,则x的取值范围是_______.15.若等腰三角形的一边,一边等于,则它的周长等于_____________.16.把命题“三边分别相等的两个三角形全等”写成“如果⋯⋯那么⋯⋯”的形式_____________.17.如图,在△ABC中,AD⊥BC于D点,BD=CD,若BC=6,AD=5,则图中阴影部分的面积为__________

.

18.如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点出发共有________条对角线.三、解答题(共78分)19.(8分)在杭州西湖风景游船处,如图,在离水面高度为5m的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13m,此人以0.5m/s的速度收绳.10s后船移动到点D的位置,问船向岸边移动了多少m?(假设绳子是直的,结果保留根号)20.(8分)已知y与成正比,当时,.(1)求y与x之间的函数关系式;(2)若点在这个函数图象上,求a的值.21.(8分)如图,在某一禁毒基地的建设中,准备再一个长为米,宽为米的长方形草坪上修建两条宽为米的通道.(1)求剩余草坪的面积是多少平方米?(2)若,,求剩余草坪的面积是多少平方米?22.(10分)已知如图,直线与x轴相交于点A,与直线相交于点P.PD垂直x轴,垂足为D.(1)求点P的坐标.(2)请判断△OPA的形状并说明理由.23.(10分)“太原市批发市场”与“西安市批发市场”之间的商业往来频繁,如图,“太原市批发市场”“西安市批发市场”与“长途汽车站”在同一线路上,每天中午12:00一辆客车由“太原市批发市场”驶往“长途汽车站”,一辆货车由“西安市批发市场”驶往“太原市批发市场”,假设两车同时出发,匀速行驶,图2分别是客车、货车到“长途汽车站”的距离与行驶时间之间的函数图像.请你根据图象信息解决下列问题:(1)由图2可知客车的速度为km/h,货车的速度为km/h;(2)根据图2直接写出直线BC的函数关系式为,直线AD的函数关系式为;(3)求点B的坐标,并解释点B的实际意义.24.(10分)化简并求值::,其中a=2018.25.(12分)化简求值(1)求的值,其中,;(2)求的值,其中.26.计算:(1)·(-3)-2(2)

参考答案一、选择题(每题4分,共48分)1、C【分析】根据三角形内角和180°来计算出最大的内角度数,然后来判断三角形的形状.【详解】解:三角形三个内角度数之比为2:3:7,三角形最大的内角为:.这个三角形一定为钝角三角形.故选:C.【点睛】本题主要考查三角形内角和180°,计算三角形最大内角是解题关键.2、A【分析】直接利用负整数指数幂的性质结合同底数幂的乘法运算法则将原式变形得出答案.【详解】解:,,则,解得:.故选:.【点睛】此题主要考查了负整数指数幂的性质以及同底数幂的乘法运算,正确掌握相关运算法则是解题关键.3、C【分析】根据全等三角形的判定定理、垂直平分线的判定及定义和三角形的面积公式逐一判断即可.【详解】解:在△ABD和△CBD中∴△ABD≌△CBD,故①正确;∵AD=CD,AB=CB,∴点D和点B都在AC的垂直平分线上∴BD垂直平分AC∴AC⊥BD,故②正确;∴S四边形ABCD=S△DAC+S△BAC=AC·DO+AC·BO=AC·(DO+BO)=AC•BD,故③正确;无法证明AD=AB∴AC不一定垂直平分BD,故④错误.综上:正确的有3个故选C.【点睛】此题考查的是全等三角形的判定定理、垂直平分线的判定及定义和三角形的面积公式,掌握全等三角形的判定定理、垂直平分线的判定及定义和三角形的面积公式是解决此题的关键.4、B【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【详解】1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选B.【点睛】此题考查全等三角形的应用,解题关键在于掌握判定定理.5、B【分析】设∠ADE=x,则∠B+19°=x+14°,可用x表示出∠B和∠C,再利用外角的性质可表示出∠DAE和∠DEA,在△ADE中利用三角形内角和求得x,即可得∠DAE的度数.【详解】解:设∠ADE=x,且∠BAD=19°,∠EDC=14°,

∴∠B+19°=x+14°,

∴∠B=x-5°,

∵AB=AC,

∴∠C=∠B=x-5°,

∴∠DEA=∠C+∠EDC=x-5°+14°=x+9°,

∵AD=DE,

∴∠DEA=∠DAE=x+9°,

在△ADE中,由三角形内角和定理可得

x+x+9°+x+9°=180°,

解得x=54°,即∠ADE=54°,

∴∠DAE=63°

故选:B.【点睛】本题考查了等腰三角形的性质以及三角形的外角的性质,用∠ADE表示出∠DAE和∠DEA是解题的关键.6、D【分析】根据垂直平分线的性质定理的逆定理即可做出选择.【详解】∵到一条线段两端点的距离相等的点在这条线段的垂直平分线上,∴到三角形三个顶点距离相等的点是三边的垂直平分线的交点,故选:D.【点睛】本题考查了线段垂直平分线,理解线段垂直平分线的性质的逆定理是解答的关键.7、C【分析】由题意根据工作时间=工作总量÷工作效率,那么4000÷x表示原来的工作时间,那么4000÷(x+10)就表示现在的工作时间,20就代表原计划比现在多的时间进行分析即可.【详解】解:原计划每天铺设管道x米,那么x+10就应该是实际每天比原计划多铺了10米,而用则表示用原计划的时间﹣实际用的时间=20天,那么就说明每天比原计划多铺设10米,结果提前20天完成任务.故选:C.【点睛】本题考查分式方程的应用,是根据方程来判断缺失的条件,要注意方程所表示的意思,结合题目给出的条件得出正确的判断.8、C【分析】分别利用直角三角形的性质、对顶角和平行线的判定方法以及绝对值的性质分析得出答案.【详解】解:A、直角三角形中两个锐角互余,故此选项错误;

B、相等的角不一定是对顶角,故此选项错误;

C、同旁内角互补,两直线平行,正确;

D、若|a|=|b|,则a=±b,故此选项错误;

故选C.【点睛】此题主要考查了命题与定理,正确把握相关性质是解题关键.9、C【分析】本题考查用科学记数法表示绝对值小于1的数,一般形式为,其中,由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:,故选:.【点睛】科学计数法一般形式为,其中.绝对值大于10时,n为正整数,绝对值小于1时,n为负整数.10、D【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值.【详解】解:原式=∴原式=3,故选D.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.11、C【解析】试题解析:根据题意得:360°÷60°=6,所以,该多边形为六边形.故选C.考点:多边形的内角与外角.12、B【分析】把x和y都扩大10倍,根据分式的性质进行计算,可得答案.【详解】解:分式中的x和y都扩大10倍可得:,∴分式的值不变,故选B.【点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变.二、填空题(每题4分,共24分)13、3【分析】延长AD与BC交于点E,求出AB和AD的长,再利用勾股定理求出BD的长【详解】如图,设CB与AD延长线交于E点∵BD平分∠ABE,在直角△ABD中,由勾股定理得到【点睛】本题考查了辅助线以及勾股定理的运用,利用辅助线求出直角三角形直角边和斜边长,再利用勾股定理求出直角边长是关键14、【分析】根据第四象限的点的横坐标是正数,列出不等式,即可求解.【详解】解:∵点在第四象限,解得,即x的取值范围是故答案为.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).15、16或1【分析】由等腰三角形的定义,可分为两种情况进行分析,分别求出周长即可.【详解】解:根据题意,则当5为腰时,有周长为:5+5+6=16;当6为腰时,有周长为:6+6+5=1;故答案为:16或1.【点睛】本题考查了等腰三角形的定义,解题的关键是熟练掌握等腰三角形的定义,注意运用分类讨论的思想进行解题.16、如果两个三角形三条边对应相等,那么这两个三角形全等【分析】命题一般都可以写成如果…那么…形式;如果后面是题设,那么后面是结论.【详解】把命题“三边分别相等的两个三角形全等”写成“如果⋯⋯那么⋯⋯”的形式为:如果两个三角形三条边对应相等,那么这两个三角形全等.故答案为:如果两个三角形三条边对应相等,那么这两个三角形全等17、7.5【解析】试题解析:根据题意,阴影部分的面积为三角形面积的一半,

阴影部分面积为:故答案为:18、1【分析】设此多边形的边数为x,根据多边形内角和公式求出x的值,再计算对角线的条数即可.【详解】设此多边形的边数为x,由题意得:(x-2)×180=1210,解得;x=9,从这个多边形的一个顶点出发所画的对角线条数:9-3=1,故答案为1.【点睛】本题考查了多边形内角和公式,多边形的对角线,关键是掌握多边形的内角和公式180(n-2),n边形的一个顶点有(n-3)条对角线.三、解答题(共78分)19、【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB-AD可得BD长.【详解】解:∵在Rt△ABC中,∠CAB=90°,BC=13m,AC=5m,∴AB==12(m),∵此人以0.5m/s的速度收绳,10s后船移动到点D的位置,∴CD=13﹣0.5×10=8(m),∴AD===(m),∴BD=AB−AD=(12−)(m)答:船向岸边移动了(12−)m.【点睛】本题考查勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.20、(1);(2)a=2.5.【分析】首先设,再把,代入所设的关系式,即可算出k的值,进而得到y与x之间的函数关系式;把代入中所求的关系式即可得到a的值.【详解】解:设

当时,,

与x之间的函数关系式为;

点在这个函数图象上,

.【点睛】考查了求一次函数关系式,关键是掌握凡是图象经过的点必能满足解析式.21、(1);(2)1.【分析】(1)根据题意和图形,可以用代数式表示出剩余草坪的面积;(2)将,代入(1)中的结果,即可解答本题.【详解】(1)剩余草坪的面积是:平方米;(2)当时,=1,即时,剩余草坪的面积是1平方米.【点睛】本题主要考查整式的混合运算,根据题意列出代数式是解题关键.22、(1);(2)等边三角形,理由见解析【分析】(1)联立两个解析式,求解即可求得P点的坐标;(2)先求出OA=4,然后根据PD⊥X轴于D,且点P的坐标为(2,),可得OD=AD=2,PD=,然后根据勾股定理可得OP=4,PA=4即可证明△POA是等边三角形.【详解】解:(1)联立两个解析式得,解得,∴点P的坐标为(2,);(2)△OPA为等边三角形,理由:将y=0代入,∴,∴解得x=4,即OA=4,∵PD⊥X轴于D,且点P的坐标为(2,),∴OD=AD=2,PD=,由勾股定理得OP=,同理可得PA=4∴△POA是等边三角形.【点睛】本题考查了一次函数的性质,勾股定理,等边三角形的判定和等腰三角形的性质,求出点P的坐标是解题关键.23、(1)60,30;(2),;(3)点的坐标为,点代表的实际意义是此时客车和货车相遇.【分析】(1)由图象可知客车6小时行驶的路程是360千米,货车2小时行驶的路程为60千米,从而可以求得客车和货车的速度;(2)先求出点D的横坐标,然后利用待定系数法,利用点(0,360)和(6,0)求出直线BC的解析式,利用点A和点D坐标求出直线AD的解析式,即可得到答案.(3)把直线BC和直线AD联合,组成方程组,即可求出点B的坐标,然后得到答案.【详解】解:由图象可得,客车的速度是:360÷6=60km/h,货车的速度是:km/h,故答案为:60;30.根据题意,货车行驶全程所用的时间为:小时;∴点D的坐标为(14,360);设直线BC为,把点(0,360)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论