




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是()A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=CD2.图是一个长为宽为的长方形,用剪刀沿它的所有对称轴剪开,把它分成四块,然后按图那样拼成一个正方形,则中间阴影部分的面积是()A. B.C. D.3.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别表示下列六个字兴、爱、我、义、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码可能是()A.我爱美 B.兴义游 C.美我兴义 D.爱我兴义4.已知,则下列不等式成立的是()A. B. C. D.5.牛顿曾说过:“反证法是数学家最精良的武器之一.”那么我们用反证法证明:“在一个三角形中,至少有一个内角小于或等于60°”时,第一步先假设()A.三角形中有一个内角小于60°B.三角形中有一个内角大于60°C.三角形中每个内角都大于60°D.三角形中没有一个内角小于60°6.下列图形是轴对称图形的是()A. B. C. D.7.如图是人字型金属屋架的示意图,该屋架由BC、AC、BA、AD四段金属材料焊接而成,其中A、B、C、D四点均为焊接点,且AB=AC,D为BC的中点,假设焊接所需的四段金属材料已截好,并已标出BC段的中点D,那么,如果焊接工身边只有可检验直角的角尺,而又为了准确快速地焊接,他应该首先选取的两段金属材料及焊接点是()A.AB和AD,点A B.AB和AC,点BC.AC和BC,点C D.AD和BC,点D8.如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1-∠2的度数是()A.32° B.64° C.65° D.70°9.如图,已知,.若要得到,则下列条件中不符合要求的是()A. B. C. D.10.若一次函数的函数值随的增大而增大,则()A. B. C. D.11.一件工作,甲单独完成需要a天,乙单独完成需要b天,如果甲、乙二人合作,那么每天的工作效率是()A.a+b B. C. D.12.下列各数是无理数的是()A.3.14 B.-π C. D.二、填空题(每题4分,共24分)13.已知一组数据1,7,10,8,,6,0,3,若,则应等于___________.14.如图,ABCD是长方形地面,长AB=10m,宽AD=5m,中间竖有一堵砖墙高MN=1m.一只蚂蚱从点A爬到点C,它必须翻过中间那堵墙,则它至少要走______m.15.如图,已知中,,,边AB的中垂线交BC于点D,若BD=4,则CD的长为_______.16.过某个多边形一个顶点的所有对角线,将这个多边形分成7个三角形,这个多边形是_____边形.17.如图,在的同侧,,点为的中点,若,则的最大值是_____.18.如图,ABCDE是正五边形,△OCD是等边三角形,则∠COB=_____°.三、解答题(共78分)19.(8分)某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲、乙两队合作完成该工程需要多少天?20.(8分)已知:如图,点B、D、C在一条直线上,AB=AD,BC=DE,AC=AE,(1)求证:∠EAC=∠BAD.(2)若∠BAD=42°,求∠EDC的度数.21.(8分)我国边防局接到情报,近海处有一可疑船只正向公海方向行驶,边防部迅速派出快艇追赶(如图1).图2中分别表示两船相对于海岸的距离(海里)与追赶时间(分)之间的关系.根据图象问答问题:(1)①直线与直线中表示到海岸的距离与追赶时间之间的关系;②与比较速度快;③如果一直追下去,那么________(填“能”或“不能")追上;④可疑船只速度是海里/分,快艇的速度是海里/分;(2)与对应的两个一次函数表达式与中的实际意义各是什么?并直接写出两个具体表达式.(3)分钟内能否追上?为什么?(4)当逃离海岸海里的公海时,将无法对其进行检查,照此速度,能否在逃入公海前将其拦截?为什么?22.(10分)因式分解:(1);(2)23.(10分)如图,已知两条射线OM∥CN,动线段AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF.(1)请在图中找出与∠AOC相等的角,并说明理由;(2)判断线段AB与OC的位置关系是什么?并说明理由;(3)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值.24.(10分)如图,四边形ABCD中,CD∥AB,E是AD中点,CE交BA延长线于点F.(1)试说明:CD=AF;(2)若BC=BF,试说明:BE⊥CF.25.(12分)在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到x,y轴的距离中的最大值等于点Q到x,y轴的距离中的最大值,则称P,Q两点为“等距点”图中的P,Q两点即为“等距点”.(1)已知点A的坐标为.①在点中,为点A的“等距点”的是________;②若点B的坐标为,且A,B两点为“等距点”,则点B的坐标为________.(2)若两点为“等距点”,求k的值.26.计算:(1)(2)解分式方程
参考答案一、选择题(每题4分,共48分)1、D【分析】根据垂直定义求出∠CFD=∠AEB=90°,由已知,再根据全等三角形的判定定理推出即可.【详解】添加的条件是AB=CD;理由如下:∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,在Rt△ABE和Rt△DCF中,,∴(HL).故选:D.【点睛】本题考查了全等三角形的判定定理的应用,能灵活运用全等三角形的判定定理进行推理是解此题的关键.2、D【分析】根据图形列出算式,再进行化简即可.【详解】阴影部分的面积S=(a+b)2−2a•2b=a2+2ab+b2−4ab=(a−b)2,故选:D.【点睛】本题考查了完全平方公式的应用,能根据图形列出算式是解此题的关键.3、D【分析】将所给整式利用提取公因式法和平方差公式进行因式分解,再与所给的整式与对应的汉字比较,即可得解.【详解】解:∵(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x+y)(x﹣y)(a+b)(a﹣b)∵x﹣y,x+y,a﹣b,a+b四个代数式分别对应:爱、我、兴、义∴结果呈现的密码可能是爱我兴义.故选:D.【点睛】本题主要考查因式分解,掌握提取公因式和因式分解的方法是解题的关键.4、C【分析】根据不等式的性质逐项分析.【详解】A在不等式的两边同时减去1,不等号的方向不变,故A错误;B在不等式的两边同时乘以3,不等号的方向不变,故B错误;C在不等式的两边同时乘以-1,不等号的方向改变,故C正确;D在不等式的两边同时乘以,不等号的方向不变,故D错误.【点睛】本题主要考查不等式的性质,(1)在不等式的两边同时加上或减去同一个数,不等号的方向不变;(2)在不等式的两边同时乘以或除以(不为零的数)同一个正数,不等号的方向不变;(3)在不等式的两边同时乘以或除以(不为零的数)同一个负数,不等号的方向改变.5、C【分析】根据反证法的步骤中,第一步是假设结论不成立,反面成立解答.【详解】解:用反证法证明:“在一个三角形中,至少有一个内角小于或等于60°”时,第一步先假设三角形中每个内角都大于60°,故选:C.【点睛】此题考查反证法,解题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.6、B【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;B、有六条对称轴,是轴对称图形,故本选项正确;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误.故选B.7、D【分析】根据全等三角形的判定定理SSS推知△ABD≌△ACD,则∠ADB=∠ADC=90°.【详解】解:根据题意知,∵在△ABD与△ACD中,,∴△ABD≌△ACD(SSS),∴∠ADB=∠ADC=90°,∴AD⊥BC,根据焊接工身边的工具,显然是AD和BC焊接点D.故选:D.【点睛】本题考查了全等三角形的应用.巧妙地借助两个三角形全等,寻找角与角间是数量关系.8、B【解析】此题涉及的知识点是三角形的翻折问题,根据翻折后的图形相等关系,利用三角形全等的性质得到角的关系,然后利用等量代换思想就可以得到答案【详解】如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置∠B=∠D=32°∠BEH=∠DEH∠1=180-∠BEH-∠DEH=180-2∠DEH∠2=180-∠D-∠DEH-∠EHF=180-∠B-∠DEH-(∠B+∠BEH)=180-∠B-∠DEH-(∠B+∠DEH)=180-32°-∠DEH-32°-∠DEH=180-64°-2∠DEH∠1-∠2=180-2∠DEH-(180-64°-2∠DEH)=180-2∠DEH-180+64°+2∠DEH=64°故选B【点睛】此题重点考察学生对图形翻折问题的实际应用能力,等量代换是解本题的关键9、C【分析】由已知,,故只需添加一组角相等或者BC=EF即可.【详解】解:A:添加,则可用AAS证明;B:添加,则可用ASA证明;C:添加,不能判定全等;D:添加,则,即BC=EF,满足SAS,可证明.故选C.【点睛】本题主要考查全等三角形的判定,掌握三角形全等的判定方法是解题的关键,注意ASS不能判定全等.10、B【解析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k的取值范围.【详解】∵在一次函数y=(k-2)x+1中,y随x的增大而增大,∴k-2>0,∴k>2,故选B.【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b(k≠0)中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.11、B【分析】根据甲单独完成需要a天可得甲每天的工作效率为,同理表示出乙每天的工作效率为,接下来只需将两人一天完成的工作量求和即可【详解】由甲单独完成需要a天,得甲每天的工作效率为由乙单独完成需要b天,得乙每天的工作效率为则甲乙两人合作,每天的工作效率为+.故答案选B.【点睛】本题考查了列代数式,解题的关键是根据题意列出代数式.12、B【分析】根据无理数的定义判断.【详解】A、3.14是有限小数,是有理数,故不符合题意;B、-π是无限不循环小数,是无理数,故符合题意;C、是无限循环小数,是有理数,故不符合题意;D、=10,是有理数,故不符合题意;故选B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.二、填空题(每题4分,共24分)13、5【分析】根据平均数公式求解即可.【详解】由题意,得∴故答案为:5.【点睛】此题主要考查对平均数的理解,熟练掌握,即可解题.14、1【解析】连接AC,利用勾股定理求出AC的长,再把中间的墙平面展开,使原来的矩形长度增加而宽度不变,求出新矩形的对角线长即可.【详解】解:如图所示,将图展开,图形长度增加2MN,原图长度增加2米,则AB=10+2=12m,连接AC,∵四边形ABCD是长方形,AB=12m,宽AD=5m,∴AC=AB2+∴蚂蚱从A点爬到C点,它至少要走1m的路程.故答案为:1.【点睛】本题考查的是平面展开最短路线问题及勾股定理,根据题意画出图形是解答此题的关键.15、【分析】连接AD,根据中垂线的性质可得AD=4,进而得到,,最后根据勾股定理即可求解.【详解】解:连接AD∵边AB的中垂线交BC于点D,BD=4∴AD=4∵,∴∴∴故答案为:.【点睛】此题主要考查中垂线的性质、角所对的直角边等于斜边的一半、勾股定理,熟练掌握性质是解题关键.16、九.【解析】设这个多边形是n边形,由题意得,n﹣2=7,解得:n=9,即这个多边形是九边形,故答案是:九.17、14【分析】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′,证明△A′MB′为等边三角形,即可解决问题.【详解】解:如图,作点关于的对称点,点关于的对称点.,,,,,为等边三角形,的最大值为,故答案为.【点睛】本题考查等边三角形的判定和性质,两点之间线段最短,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题18、66°【分析】根据题意和多边形的内角和公式,可得正五边形的一个内角是108°,再根据等边三角形的性质和等腰三角形的性质计算即可.【详解】解:∵五边形ABCDE是正五边形,∴∠BCD=108°,CD=BC,∵△OCD是等边三角形,∴∠OCD=60°,OC=CD,∴OC=BC,∠OCB=108°﹣60°=48°,∴∠COB==66°.故答案为:66°.【点睛】本题主要考察了多边形的内角和,关键是得出正五边形一个内角的度数为108°,以及找出△OBC是等腰三角形.三、解答题(共78分)19、(1)这项工程的规定时间是30天;(2)甲乙两队合作完成该工程需要18天.【分析】(1)设这项工程的规定时间是天,则甲队单独施工需要天完工,乙队单独施工需要天完工,依题意列方程即可解答;(2)求出甲、乙两队单独施工需要的时间,再根据题意列方程即可.【详解】(1)设这项工程的规定时间是天,则甲队单独施工需要天完工,乙队单独施工需要天完工,依题意,得:.解得:,经检验,是原方程的解,且符合题意.答:这项工程的规定时间是30天.(2)由(1)可知:甲队单独施工需要30天完工,乙队单独施工需要45天完工,(天),答:甲乙两队合作完成该工程需要18天.【点睛】本题考查分式方程的应用,理解题意,根据等量关系列出方程是解题的关键.20、(1)见解析(2)42°.【解析】试题分析:(1)利用“边边边”证明△ABC和△ADE全等,根据全等三角形对应角相等可得∠BAC=∠DAE,然后都减去∠CAD即可得证;(2)根据全等三角形对应角相等可得∠B=∠ADE,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠EDC=∠BAD,从而得解.试题解析:(1)证明:在△ABC和△ADE中,,∴△ABC≌△ADE(SSS),∴∠BAC=∠DAE,∴∠DAE﹣∠CAD=∠BAC﹣∠CAD,即:∠EAC=∠BAD;(2)∵△ABC≌△ADE,∴∠B=∠ADE,由三角形的外角性质得,∠ADE+∠EDC=∠BAD+∠B,∴∠EDC=∠BAD,∴∠BAD=42°,∴∠EDC=42°.21、(1)①;②;③能;④0.2,0.5.(2)两直线函数表达式中的表示的是两船的速度.A船:,B船:.(3)15分钟内不能追上.(4)能在逃入公海前将其拦截.【分析】(1)①根据图象的意义,是从海岸出发,表示到海岸的距离与追赶时间之间的关系;②观察两直线的斜率,B船速度更快;③B船可以追上A船;④根据图象求出两直线斜率,即为两船的速度.(2)两直线函数表达式中的表示的是两船的速度.(3)求出两直线的函数表达式,令时间,代入两表达式,若,则表示能追上,否则表示不能追上.(4)联立两函数表达式,解出B船追上A船时的时间与位置,与12海里比较,若该位置小于12海里,则表示能在逃入公海前将其拦截.【详解】解:(1)①直线与直线中,表示到海岸的距离与追赶时间之间的关系;②与比较,速度快;③B船速度更快,可以追上A船;④B船速度海里/分;A船速度海里/分.(2)由图象可得,将点代入,可得,解得,表示B船的速度为每分钟0.5海里,所以:.将点,代入,可得,解得,所以:,表示A船速度为每分钟0.2海里.(3)当时,,,,所以15分钟内不能追上.(4)联立两表达式,,解得,此时,所以能在逃入公海前将其拦截.【点睛】本题结合追及问题考查了一次函数的图象与性质,一次函数的应用等,熟练掌握函数的图象与性质,理解图象所代表的的实际意义是解答关键.22、(1);(2)【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解因式即可.【详解】解:(1)(2)【点睛】此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.23、(1)与相等的角是;(2),证明详见解析;(3)与的度数比不随着位置的变化而变化,【分析】(1)根据两直线平行,同旁内角互补可得、,再根据邻补角的定义求出即可得解;(2)根据两直线的同旁内角互补,两直线平行,即可证明;(3)根据两直线平行,内错角相等可得,再根据角平分线的定义可得,从而得到比值不变.【详解】(1)∴又与相等的角是;(2)理由是:即(3)与的度数比不随着位置的变化而变化平分,【点睛】本题考查了平行线的性质,掌握平行线的性质以及判定定理是解题的关键.24、(1)证明见解析;(2)证明见解析【分析】(1)由CD∥AB,可得∠CDE=∠FAE,而E
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年文化遗产数字化展示与传播策略在博物馆应用研究报告
- 邛崃商业保洁合同协议
- 纺织品设计师专业术语解析试题及答案
- 水田卖卖协议书
- 货车转让合同协议书百度
- 煤厂入股协议书
- 广告设计师证书考试用户需求与设计评估题及答案
- 落地协议书合同
- 越野叉车租售合同协议
- 乡村旅游项目2025年社会稳定风险评估与文化遗产保护报告
- 贷款延期通知函
- 2025-2030年中国钢铁中厚板行业运行状况及发展规划分析报告
- 2024年金融研究所科研财务助理招聘笔试真题
- 儿科专业课 17-肾病综合征学习课件
- 中国健美协会cbba(高级)健身教练证考试复习题库(含答案)
- 辽宁省大连市西岗区2024-2025学年八年级上学期期末道德与法治试卷
- 检验检测机构程序文件培训考核试卷
- DB5104T 63-2023 地理标志保护产品 苴却砚
- 肿瘤专科护士进修学习汇报
- 护理科研课题撰写
- 新能源项目纠纷法律适用与案例解析-笔记
评论
0/150
提交评论