2022年云南省昆明市祯祥初级中学数学八年级第一学期期末学业质量监测模拟试题含解析_第1页
2022年云南省昆明市祯祥初级中学数学八年级第一学期期末学业质量监测模拟试题含解析_第2页
2022年云南省昆明市祯祥初级中学数学八年级第一学期期末学业质量监测模拟试题含解析_第3页
2022年云南省昆明市祯祥初级中学数学八年级第一学期期末学业质量监测模拟试题含解析_第4页
2022年云南省昆明市祯祥初级中学数学八年级第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.若,则的值为()A.1 B. C. D.2.如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有(

)个

.A.1 B.2 C.3 D.43.要使分式有意义,则的取值应满足()A. B. C. D.4.如图,在中,分别以点和点为圆心,大于的长为半径画弧,两弧相交于点,,连接,交于点,连接,若的周长为,,则的周长为()A. B. C. D.5.如图,点D、E在△ABC的边BC上,△ABD≌△ACE,下列结论不一定成立的是()A. B. C. D.6.若是完全平方式,则的值为()A.-5或7 B. C.13或-11 D.11或-137.如图,∥,点在直线上,且,,那么=()A.45° B.50° C.55° D.60°8.下列二次根式是最简二次根式的()A. B. C. D.9.下列图形既是中心对称又是轴对称图形的是()A.平行四边形和矩形 B.矩形和菱形C.正三角形和正方形 D.平行四边形和正方形10.已知xm=6,xn=3,则x2m―n的值为(

)A.9 B. C.12 D.11.甲乙两地铁路线长约500千米,后来高铁提速,平均速度是原来火车速度的1.8倍,这样由甲到乙的行驶时间缩短了1.5小时;设原来火车的平均速度为千米/时,根据题意,可得方程()A. B.C. D.12.如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点的坐标可表示为(1,2,5),点的坐标可表示为(4,1,3),按此方法,则点的坐标可表示为()A. B. C. D.二、填空题(每题4分,共24分)13.甲、乙两地9月上旬的日平均气温如图所示,则甲、乙两地这10天日平均气温方差大小关系为s甲2__________s乙2(填“>”或“<”).14.若关于的不等式组有且只有五个整数解,则的取值范围是__________.15.如图,在中,,,点的坐标为,点的坐标为,点的坐标是__________.16.如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为_____.17.如图,等腰三角形中,是的垂直平分线,交于,恰好是的平分线,则=_____18.根据下表中一次函数的自变量x与函数y的对应值,可得p的值为_____.三、解答题(共78分)19.(8分)已知:a2+3a﹣2=0,求代数a-3a20.(8分)如图,在△ABC中,BE、CD相交于点E,设∠A=2∠ACD=76°,∠2=143°,求∠1和∠DBE的度数.21.(8分)先化简,再求值:(﹣a﹣2)÷.其中a与2,3构成△ABC的三边,且a为整数.22.(10分)如图直线对应的函数表达式为,直线与轴交于点.直线:与轴交于点,且经过点,直线,交于点.(1)求点,点的坐标;(2)求直线对应的函数表达式;(3)求的面积;(4)利用函数图象写出关于,的二元一次方程组的解.23.(10分)如图,AB∥DC,AB=DC,AC与BD相交于点O.求证:AO=CO.24.(10分)已知一个多边形的内角和,求这个多边形的边数.25.(12分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°,∠DAE=18°,求∠C的度数.26.已知△ABC中,AB=17,AC=10,BC边上得高AD=8,则边BC的长为________

参考答案一、选择题(每题4分,共48分)1、D【解析】∵,∴==,故选D2、C【解析】①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,BD=BC,∠ABD=∠CBD,BE=BA,∴△ABD≌△EBC(SAS),∴①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,∴②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC,∴③正确;④因为BD是△ABC的角平分线,且BA>BC,所以D不可能是AC的中点,则AC≠2CD,故④错误.故选:C.【点睛】此题考查角平分线定理,全等三角形的判定与性质、等腰三角形的性质与判定、三角形内角和定理、三角形的面积关系等知识,本题综合性强,有一定难度,证明三角形全等是解决问题的关键.3、A【解析】根据分式有意义的条件是分母不为0列出不等式,解可得自变量x的取值范围,【详解】解:由题意得,x-5≠0,

解得,x≠5,

故选:A.【点睛】本题主要考查了分式有意义的条件,掌握分式有意义的条件是分母不等于0是解题的关键.4、C【分析】本题主要涉及到了线段垂直平分线性质,代入题目相关数据,即可解题.【详解】解:在△ABC中,以点A和点B为圆心,大于二分之一AB的长为半径画弧,两弧相交于点M,N,则直线MN为AB的垂直平分线,则DA=DB,△ADC的周长由线段AC,AD,DC组成,△ABC的周长由线段AB,BC,CA组成而DA=DB,因此△ABC的周长为10+7=17.故选C.【点睛】本题考察线段垂直平分线的根本性质,解题时要注意数形结合,从题目本身引发思考,以此为解题思路.5、A【分析】根据全等三角形的对应边相等、对应角相等逐一判断即可.【详解】∵△ABD≌△ACE,

∴BD=CE,

∴BE=CD,故B成立,不符合题意;

∠ADB=∠AEC,

∴∠ADE=∠AED,故C成立,不符合题意;

∠BAD=∠CAE,

∴∠BAE=∠CAD,故D成立,不符合题意;

AC不一定等于CD,故A不成立,符合题意.

故选:A.【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.6、C【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【详解】解:∵9x2-2(k-1)x+16=(3x)2-2(k-1)x+42,

∵9x2-2(k-1)x+16是完全平方式,∴-2(k-1)x=±2×3x×4,

解得k=13或k=-1.

故选:C.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.7、C【解析】根据∥可以推出,根据平角的定义可知:而,∴,∴;∵∴,∴.故应选C.8、D【解析】根据最简二次根式的概念判断即可.【详解】A.不是最简二次根式;B.不是最简二次根式;C.不是最简二次根式;D.是最简二次根式;故选:D.【点睛】本题考查的是最简二次根式的概念,(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,满足上述两个条件的二次根式,叫做最简二次根式.9、B【解析】根据轴对称图形与中心对称图形的概念求解.【详解】A、矩形既是轴对称图形,也是中心对称图形,平行四边形不是轴对称图形,是中心对称图形.故错误;B、矩形、菱形既是轴对称图形,也是中心对称图形.故正确;C、等边三角形是轴对称图形,不是中心对称图形.故错误;D、正方形既是轴对称图形,也是中心对称图形,平行四边形不是轴对称图形,是中心对称图形.故错误.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.10、C【解析】试题解析:试题解析:∵xm=6,xn=3,∴x2m-n==36÷3=12.故选C.11、C【分析】设原来高铁的平均速度为x千米/时,则提速后的平均速度为1.8x,根据题意可得:由甲到乙的行驶时间比原来缩短了1.5小时,列方程即可.【详解】解:设原来火车的平均速度为x千米/时,则提速后的平均速度为1.8x,由题意得,.故选C.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.12、C【分析】分别找到点C与过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号,然后从水平方向开始,顺时针方向即可写出C的坐标.【详解】过点C且平行(或重合)于原三角形三条边的直线与三边交点的序号分别是2,4,2∵水平方向开始,按顺时针方向∴点C的坐标为故选:C.【点睛】本题主要考查在新坐标系下确定点的坐标,读懂题意是解题的关键.二、填空题(每题4分,共24分)13、>【分析】根据方差的意义:方差越小则波动越小,稳定性也越好,结合气温统计图即可得出结论.【详解】解:由气温统计图可知:乙地的气温波动小,比较稳定∴乙地气温的方差小∴故答案为:>.【点睛】此题考查的是比较方差的大小,掌握方差的意义:方差越小则波动越小,稳定性也越好是解决此题的关键.14、【分析】先求出不等式组的解集,根据不等式组有且只有五个整数解,列出关于k的不等式即可得到答案.【详解】解不等式组得,∵不等式组有且只有五个整数解,∴,∴,故答案为:.【点睛】此题考查不等式组的整数解问题,能根据不等式组的解集列出k的不等式是解题的关键.15、(1,6)【分析】过A和B分别作AD⊥OC于D,BE⊥OC于E,利用已知条件可证明△ADC≌△CEB,再由全等三角形的性质和已知数据即可求出B点的坐标.【详解】解:过A和B分别作AD⊥OC于D,BE⊥OC于E,

∵∠ACB=90°,

∴∠ACD+∠CAD=90°∠ACD+∠BCE=90°,

∴∠CAD=∠BCE,

在△ADC和△CEB中,

∵,

∴△ADC≌△CEB(AAS),

∴DC=BE,AD=CE,

∵点C的坐标为(-2,0),点A的坐标为(-8,3),

∴OC=2,AD=CE=3,OD=8,

∴CD=OD-OC=6,OE=CE-OC=3-2=1,

∴BE=6,

∴则B点的坐标是(1,6)

故答案为(1,6)【点睛】本题借助于坐标与图形性质,重点考查了直角三角形的性质、全等三角形的判定和性质,解题的关键是做高线构造全等三角形.16、48°【分析】将BE与CD交点记为点F,由两直线平行同位角相等得出∠EFC度数,再利用三角形外角的性质可得答案.【详解】解:如图所示,将BE与CD交点记为点F,∵AB∥CD,∠B=75°,∴∠EFC=∠B=75°,又∵∠EFC=∠D+∠E,且∠E=27°,∴∠D=∠EFC﹣∠E=75°﹣27°=48°,故答案为:48°.【点睛】本题考查平行线的性质和三角形外角性质,解题的关键是掌握两直线平行,同位角相等这一性质.17、36【分析】设=x,根据垂直平分线的性质得到,根据角平分线的性质得到,由得到,再根据三角形内角和列方程求出x即可.【详解】设=x,∵MN是的垂直平分线,∴,∵恰好是的平分线∴,∵∴,∵即解得x=36故答案为:36.【点睛】此题主要考查三角形角度求解,解题的关键是熟知等腰三角形、垂直平分线及角平分线的性质.18、1【分析】设出一次函数的一般式,然后用待定系数法确定函数解析式,最后将x=0代入即可.【详解】解:设一次函数的解析式为y=kx+b(k≠0),由题意得:解得:所以函数解析式为:y=-x+1当x=0时,y=1,即p=1.故答案是:1.【点睛】本题考查了用待定系数法求一次函数解析式,解题的关键在于理解一次函数图象上的点坐标一定适合函数的解析式.三、解答题(共78分)19、12【解析】根据分式的混合运算顺序和运算法则把所给的分式化为最简,再由题意得出a2+3a=2,代入即可求解.【详解】原式=a-3=a-3a=a-3a(a-2)=1a(a+3)=1a∵a2+3a﹣2=0,∴a2+3a=2,∴原式=12【点睛】本题主要考查分式的化简求值,根据分式的混合运算顺序和运算法则把分式化为最简是解题的关键.20、∠1=114°;∠DBE=29°【解析】试题分析:求出∠ACD,然后根据三角形的一个外角等于与它不相邻的两个内角的和可得∠1=∠A+∠ACD计算即可得解;再根据三角形的一个外角等于与它不相邻的两个内角的和列式求解即可得到∠DBE.解:∵2∠ACD=76°,∴∠ACD=38°,在△ACD中,∠1=∠A+∠CD=76°+38°=114°;在△BDE中,∠DBE=∠2﹣∠1=143°﹣114°=29°.21、﹣a2+2a,-3【解析】分析:先算减法,再把除法变成乘法,算乘法,求出a,最后代入请求出即可.详解:原式∵a与2,3构成△ABC的三边,且a为整数,∴a为2、3、4,当a=2时,a−2=0,不行舍去;当a=4时,a−4=0,不行,舍去;当a=3时,原式=−3.点睛:考查分式混合运算以及三角形的三边关系,掌握分式混合运算的法则是解题的关键.22、(1)点D的坐标为(1,0),点C的坐标为(2,2);(2);(3)3;(4)【分析】(1)将y=0代入直线对应的函数表达式中即可求出点D的坐标,将点代入直线对应的函数表达式中即可求出点C的坐标;(2)根据图象可知点B的坐标,然后将点B和点C的坐标代入中,即可求出直线对应的函数表达式;(3)过点C作CE⊥x轴,先求出点A的坐标,然后根据三角形的面积公式求面积即可;(4)根据二元一次方程组的解和两个一次函数交点坐标关系即可得出结论.【详解】解:(1)将y=0代入中,解得x=1∴点D的坐标为(1,0)将点代入中,得解得:∴点C的坐标为(2,2);(2)由图象可知:点B的坐标为(3,1)将点B和点C的坐标代入中,得解得:∴直线对应的函数表达式为;(3)过点C作CE⊥x轴于E,将y=0代入中,解得x=4∴点A的坐标为(4,0)∵点D(1,0),点C(2,2)∴AD=4-1=3,CE=2∴S△ADC=;(4)∵直线,交于点∴关于,的二元一次方程组的解为.【点睛】此题考查的是一次函数的综合题,掌握用待定系数法求一次函数的解析式、求一次函数与坐标轴的交点坐标、求两个一次函数与坐标轴围成三角形的面积和二元一次方程组的解和两个一次函数交点坐标关系是解决此题的关键.23、证明见解析.【解析】试题分析:由AB∥CD,可得∠A=∠C,∠B=∠D,结合AB=CD即可由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论