重难点03 相似三角形(原卷版)_第1页
重难点03 相似三角形(原卷版)_第2页
重难点03 相似三角形(原卷版)_第3页
重难点03 相似三角形(原卷版)_第4页
重难点03 相似三角形(原卷版)_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重难点03相似三角形考点一:比例学习比例、比例线段的性质等知识是学习三角形相似的基础,数学中考中很多省市也会把这个考点单独出题考察,特别是黄金分割和平行线分线段成比例的基本性质,都是经常出现的小题,但这类题一般难度不大,掌握好易错点,再仔细计算即可!题型01比例与比例线段易错点:4个数成比例时,对应数据可正可负;线段成比例时,对应数据只能是正数,特别是比例中项的计算中,更要注意线段正负的问题;【中考真题练】1.若=,则ab=()A.6 B. C.1 D.2.(2023•甘孜州)若,则=.3.小慧同学在学习了九年级上册“4.1比例线段”3节课后,发现学习内容是一个逐步特殊化的过程,请在横线上填写适当的数值,感受这种特殊化的学习过程.【中考模拟练】1.(2024•凉州区一模)下列各组数中,成比例的是()A.1,﹣2,﹣3,﹣6 B.1,4,2,﹣8 C.5,6,2,3 D.,,1,2.(2024•汝南县一模)如果2a=5b,那么下列比例式中正确的是()A.= B.= C.= D.=3.(2023•望江县模拟)下列各组中的四条线段成比例的是()A.3cm、5cm、6cm、9cm B.3cm、5cm、8cm、9cm C.3cm、9cm、10cm、30cm D.3cm、6cm、7cm、9cm4.(2024•凉州区一模)已知=,则=.5.(2024•锦江区校级模拟)=.6.(2024•山阳县一模)如图,在小提琴的设计中蕴含着数学知识,AC,BC,AB各部分长度满足BC2=AC•AB,若小提琴的总长度AB为59cm,则琴身BC的长为cm.题型02黄金分割易错点:一个线段的黄金分割点有2个,黄金分割比=,0.618是黄金分割比的近似值。题目中没有要求时,一般都要用原值;【中考真题练】1.(2023•绵阳)黄金分割由于其美学性质,受到摄影爱好者和艺术家的喜爱,摄影中有一种拍摄手法叫黄金构图法.其原理是:如图,将正方形ABCD的底边BC取中点E,以E为圆心,线段DE为半径作圆,其与底边BC的延长线交于点F,这样就把正方形ABCD延伸为矩形ABFG,称其为黄金矩形.若CF=4a,则AB=()A.(﹣1)a B.(﹣2)a C.(+1)a D.(+2)a2.(2023•济南)如图,在△ABC中,AB=AC,∠BAC=36°,以点C为圆心,以BC为半径作弧交AC于点D,再分别以B,D为圆心,以大于BD的长为半径作弧,两弧相交于点P,作射线CP交AB于点E,连接DE.以下结论不正确的是()A.∠BCE=36° B.BC=AE C. D.3.(2023•达州)如图,乐器上的一根弦AB=80cm,两个端点A,B固定在乐器面板上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,则支撑点C,D之间的距离为cm.(结果保留根号)4.(2023•黄石)关于x的一元二次方程x2+mx﹣1=0,当m=1时,该方程的正根称为黄金分割数.宽与长的比是黄金分割数的矩形叫做黄金矩形,希腊的巴特农神庙采用的就是黄金矩形的设计;我国著名数学家华罗庚的优选法中也应用到了黄金分割数.(1)求黄金分割数;(2)已知实数a,b满足:a2+ma=1,b2﹣2mb=4,且b≠﹣2a,求ab的值;(3)已知两个不相等的实数p,q满足:p2+np﹣1=q,q2+nq﹣1=p,求pq﹣n的值.【中考模拟练】1.(2024•东昌府区一模)如图,线段AB上的点C满足关系式:AC2=BC•AB,且AB=2,则AC的长为()A.或 B. C. D.2.(2024•昆明模拟)黄金分割是一个跨越数学、自然、艺术和设计领域的概念,各个领域中无处不在.黄金分割是指将一个整体分为两部分,其中较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为,通常人们把这个数叫做黄金分割数.请估计的值在()A.0和之间 B.和1之间 C.1和之间 D.和2之间3.(2024•安州区二模)如图,以线段AB为边作正方形ABCD,取AD的中点E,连接BE,延长DA至F,使得EF=BE,以AF为边作正方形AFGH,则点H即是线段AB的黄金分割点.若记正方形AFGH的面积为S1,矩形HICB的面积为S2,则S1与S2的大小关系是()A.S1>S2 B.S1<S2 C.S1=S2 D.不能确定4.(2024•大渡口区模拟)已知C是线段AB的黄金分割点(AC>BC),则AC:AB=()A.﹣1):2 B.+1):2 C.):2 D.):25.(2024•高新区校级二模)“黄金分割”给人以美感,它在建筑、艺术等领域有着广泛的应用.秦兵马俑被誉为“世界第八大奇迹”,兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比约为,若如图所示的兵马俑头顶到下巴的距离为0.3m,则该兵马俑的眼睛到下巴的距离为m.题型03平行线分线段成比例【中考真题练】1.(2023•吉林)如图,在△ABC中,点D在边AB上,过点D作DE∥BC,交AC于点E.若AD=2,BD=3,则的值是()A. B. C. D.2.(2023•常州)小明按照以下步骤画线段AB的三等分点:画法图形(1)以A为端点画一条射线;(2)用圆规在射线上依次截取3条等长线段AC、CD、DE,连接BE;(3)过点C、D分别画BE的平行线,交线段AB于点M、N.M、N就是线段AB的三等分点.这一画图过程体现的数学依据是()A.两直线平行,同位角相等 B.两条平行线之间的距离处处相等 C.垂直于同一条直线的两条直线平行 D.两条直线被一组平行线所截,所得的对应线段成比例3.(2023•北京)如图,直线AD,BC交于点O,AB∥EF∥CD,若AO=2,OF=1,FD=2,则的值为.4.(2023•岳阳)如图,在⊙O中,AB为直径,BD为弦,点C为的中点,以点C为切点的切线与AB的延长线交于点E.(1)若∠A=30°,AB=6,则的长是(结果保留π);(2)若=,则=.【中考模拟练】1.(2024•大渡口区模拟)如图,AD∥BE∥CF,若DE=7,DF=21,AB=6,则AC的长度是()A.12 B.18 C.15 D.2.(2024•香坊区一模)如图,在△ABC中,D,E,F分别是边AB,AC,BC上的点,DE∥BC,EF∥AB,且BF:FC=3:4,AB=14,则EF的长为()A.5 B.6 C.7 D.83.(2024•新安县一模)如图,AB∥CD∥EF,AF与BE相交于点G,且DG=2,DF=10,=,则AG的长为()A.2 B.3 C.4 D.54.(2024•沭阳县模拟)如图,在△ABC中,D在AC边上,AD:DC=1:2,O是BD的中点,连接AO并延长交BC于点E,若BE=1,则EC的长为()A.2 B.2.5 C.3 D.45.(2024•海宁市校级模拟)如图,在△ABC中,AB=AC,AD是BC边上的高线,点E,F分别在AC,CD上,且∠1=∠2.(1)求证:AD∥EF.(2)当CE:AE=3:5,CF=6时,求BC的长.考点二:相似三角形相似三角形是中考数学中非常重要的一个考点,出题难度跨度很大,当然,单独出题时,相似三角形的性质、判定、应用大多以基础和中等题为主。题型01相似三角形的判定与性质解题大招01:相似三角形性质的主要应用方向有:①求角的度数;②求或证明比值关系;③证线段等积式;④求面积或面积比;解题大招02:相似三角形的对应边成比例是求线段长度的重要方法,也是动点问题中得到函数关系式的重要手段;解题大招03:判定三角形相似的思路:(1)有平行截线——用平行线的性质,找等角(2)有一对等角,找(3)有两边对应成比例,找夹角相等(4)直角三角形,找(5)等腰三角形,找【中考真题练】1.(2023•重庆)若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是()A.1:2 B.1:4 C.1:8 D.1:162.(2023•恩施州)如图,在△ABC中,DE∥BC分别交AC,AB于点D,E,EF∥AC交BC于点F,,BF=8,则DE的长为()A. B. C.2 D.33.(2023•徐州)如图,在△ABC中,∠B=90°,∠A=30°,BC=2,D为AB的中点.若点E在边AC上,且,则AE的长为()A.1 B.2 C.1或 D.1或24.如图,在▱ABCD中,F是AD上一点,CF交BD于点E,CF的延长线交BA的延长线于点G,EF=1,EC=3,则GF的长为()A.4 B.6 C.8 D.105.(2023•德州)如图,A,B,C,D是⊙O上的点,AB=AD,AC与BD交于点E,AE=3,EC=5,BD=4,⊙O的半径为()A.6 B. C.5 D.26.(2023•绍兴)如图,在△ABC中,D是边BC上的点(不与点B,C重合).过点D作DE∥AB交AC于点E;过点D作DF∥AC交AB于点F,N是线段BF上的点,BN=2NF,M是线段DE上的点,DM=2ME.若已知△CMN的面积,则一定能求出()A.△AFE的面积B.△BDF的面积 C.△BCN的面积D.△DCE的面积7.(2023•江西)《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度.如图,点A,B,Q在同一水平线上,∠ABC和∠AQP均为直角,AP与BC相交于点D.测得AB=40cm,BD=20cm,AQ=12m,则树高PQ=m.8.(2023•怀化)在平面直角坐标系中,△AOB为等边三角形,点A的坐标为(1,0).把△A0B按如图所示的方式放置,并将△AOB进行变换:第一次变换将△AOB绕着原点O顺时针旋转60°,同时边长扩大为△AOB边长的2倍,得到△A1OB1;第二次旋转将△A1OB1绕着原点O顺时针旋转60°,同时边长扩大为△A1OB1边长的2倍,得到△A2OB2,….依次类推,得到△A2023OB2023,则△A2023OB2023的边长为,点A2023的坐标为.9.(2023•无锡)如图,平行四边形ABCD中,E、F分别为BC、CD的中点,AF与DE相交于点G,则DG:EG=.10.(2023•广东)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为.11.(2023•常德)如图1,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,D是AB上一点,且AD=2,过点D作DE∥BC交AC于E,将△ADE绕A点顺时针旋转到图2的位置.则图2中的值为.12.(2023•湘潭)在Rt△ABC中,∠BAC=90°,AD是斜边BC上的高.(1)证明:△ABD∽△CBA;(2)若AB=6,BC=10,求BD的长.13.(2023•上海)如图,在梯形ABCD中AD∥BC,点F,E分别在线段BC,AC上,且∠FAC=∠ADE,AC=AD.(1)求证:DE=AF;(2)若∠ABC=∠CDE,求证:AF2=BF•CE.14.(2023•泰安)如图,△ABC和△CDE均是等腰直角三角形,EF⊥AD;(1)当AF=DF时,求∠AED;(2)求证:△EHG∽△ADG;(3)求证:.【中考模拟练】1.(2024•揭东区一模)如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则等于()A. B. C. D.2.(2024•萧县一模)如图,在正方形ABCD中,E,F分别是边AB,BC上的点,且DE⊥EF,若,则=()A.1 B. C. D.3.(2024•平房区一模)如图,DE∥BC,EF∥AB,AC分别交DE、EF于点G、K,下列结论错误的是()A. B. C. D.4.(2024•石狮市模拟)如图,在△ABC中,点D在AB边上,DE∥BC,交AC于点E.若,且△ABC的面积为9,则△ADE的面积为.5.(2024•交城县一模)如图,在菱形ABCD中,AB=4,∠C=120°,AE⊥BC于点E,对角线BD交AE于点F,则AF的长为.6.(2024•黄浦区二模)如图,D是等边△ABC边BC上点,BD:CD=2:3,作AD的垂线交AB、AC分别于点E、F,那么AE:AF=.7.(2024•东安县一模)如图,在△ABC中,D是AB上一点,连接CD,点E在CD上,连接BE,已知BD=BE,且∠ACB=∠BED.(1)求证:△BEC∽△CDA;(2)若BD=4,DE=3,BC=5,求CE的长.8.(2024•开原市一模),如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,点F在AB上,连接CF并延长,交⊙O于点D,连接BD,作BE⊥CD,垂足为E.(1)求证:△DBE∽△ABC;(2)若AF=2,求ED的长.9.(2024•凉州区校级一模)已知,如图,在梯形ABCD中,AD∥BC,∠BCD=90°,对角线AC、BD相交于点E,且AC⊥BD.(1)求证:CD2=BC•AD;(2)点F是边BC上一点,连接AF,与BD相交于点G,如果∠BAF=∠DBF,求证:.10.(2024•惠城区模拟)把Rt△ABC和Rt△DEF按如图(1)摆放(点C与E重合),点B、C(E)、F在同一条直线上.已知:∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=10cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点A出发,以2cm/s的速度沿AB向点B匀速移动;当点P移动到点B时,点P停止移动,△DEF也随之停止移动.DE与AC交于点Q,连接PQ,设移动时间为t(s).(1)用含t的代数式表示线段AP和AQ的长,并写出t的取值范围;(2)连接PE,设四边形APEQ的面积为y(cm2),试探究y的最大值;(3)当t为何值时,△APQ是等腰三角形.题型02相似三角形的应用解题大招:相似三角形在实际生活中的应用:建模思想:建立相似三角形的模型(二)常见题目类型:1.利用投影、平行线、标杆等构造相似三角形求解2.测量底部可以到达的物体的高度3.测量底部不可以到达的物体的高度4.测量河的宽度【中考真题练】1.如图,不等臂跷跷板AB的一端A碰到地面时,另一端B到地面的高度为60cm;当AB的一端B碰到地面时,另一端A到地面的高度为90cm,则跷跷板AB的支撑点O到地面的高度OH是()A.36cm B.40cm C.42cm D.45cm2.(2023•湖州)某数学兴趣小组测量校园内一棵树的高度,采用以下方法:如图,把支架(EF)放在离树(AB)适当距离的水平地面上的点F处,再把镜子水平放在支架(EF)上的点E处,然后沿着直线BF后退至点D处,这时恰好在镜子里看到树的顶端A,再用皮尺分别测量BF,DF,EF,观测者目高(CD)的长,利用测得的数据可以求出这棵树的高度.已知CD⊥BD于点D,EF⊥BD于点F,AB⊥BD于点B,BF=6米,DF=2米,EF=0.5米,CD=1.7米,则这棵树的高度(AB的长)是米.3.(2023•潍坊)在《数书九章》(宋•秦九韶)中记载了一个测量塔高的问题:如图所示,AB表示塔的高度,CD表示竹竿顶端到地面的高度,EF表示人眼到地面的高度,AB、CD、EF在同一平面内,点A、C、E在一条水平直线上.已知AC=20米,CE=10米,CD=7米,EF=1.4米,人从点F远眺塔顶B,视线恰好经过竹竿的顶端D,可求出塔的高度.根据以上信息,塔的高度为米.4.(2023•攀枝花)拜寺口双塔,分为东西两塔,位于宁夏回族自治区银川市贺兰县拜寺口内,是保存最为完整的西夏佛塔,已有近1000年历史,是中国佛塔建筑史上不可多得的艺术珍品.某数学兴趣小组决定采用我国古代数学家赵爽利用影子对物体进行测量的原理,来测量东塔的高度.东塔的高度为AB,选取与塔底B在同一水平地面上的E、G两点,分别垂直地面竖立两根高为1.5m的标杆EF和GH,两标杆间隔EG为46m,并且东塔AB、标杆EF和GH在同一竖直平面内.从标杆EF后退2m到D处(即ED=2m),从D处观察A点,A、F、D在一直线上;从标杆GH后退4m到C处(即CG=4m),从C处观察A点,A、H、C三点也在一直线上,且B、E、D、G、C在同一直线上,请你根据以上测量数据,帮助兴趣小组求出东塔AB的高度.5.(2023•南京)如图,玻璃桌面与地面平行,桌面上有一盏台灯和一支铅笔,点光源O与铅笔AB所确定的平面垂直于桌面.在灯光照射下,AB在地面上形成的影子为CD(不计折射),AB∥CD.(1)在桌面上沿着AB方向平移铅笔,试说明CD的长度不变.(2)桌面上一点P恰在点O的正下方,且OP=36cm,PA=18cm,AB=18cm,桌面的高度为60cm.在点O与AB所确定的平面内,将AB绕点A旋转,使得CD的长度最大.①画出此时AB所在位置的示意图;②CD的长度的最大值为cm.【中考模拟练】1.(2024•剑河县校级模拟)如图①,是生活中常见的人字梯,也称折梯,用于在平面上方空间进行工作的一类登高工具,因其使用时,左右的梯杆及地面构成一个等腰三角形,看起来像一个“人”字,因而把它形象的称为“人字梯”.如图②,是其工作示意图,AB=AC,拉杆EF∥BC,AE=,EF=0.35米,则两梯杆跨度B、C之间距离为()A.2米 B.2.1米 C.2.5米 D.米2.(2024•甘井子区一模)《孙子算经》有首数学歌谣,意思是:有一根竹竿不知道有多长,直立后量出它在太阳下的影子长一丈五尺,同时直立一根一尺五寸的小标杆(如图所示),它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.四丈 B.四丈五尺 C.五丈 D.五丈四尺3.(2024•应县一模)如图,这是一把折叠椅子及其侧面的示意图,线段AE和BD相交于点C,点F在AE的延长线上,测得AC=30cm,BC=40cm,CD=24cm,EC=18cm,若∠BAC=60°,则∠DEF的度数为()A.120° B.125° C.130° D.135°4.(2024•深圳模拟)如图是凸透镜成像示意图,CD是蜡烛AB通过凸透镜MN所成的虚像.已知蜡烛的高AB为5.4cm,蜡烛AB离凸透镜MN的水平距离OB为6cm,该凸透镜的焦距OF为10cm,AE∥OF,则像CD的高为()A.15cm B.14.4cm C.13.5cm D.9cm5.(2024•化德县校级模拟)如图,在测量旗杆高度的数学活动中,小达同学在脚下放了一面镜子,然后向后退,直到他刚好在镜子中看到旗杆的顶部.若眼睛距离地面AB=1.5米,同时量得BC=2米,CD=10米,则旗杆高度DE为()A.7.5米 B.米 C.7米 D.9.5米6.(2024•新昌县一模)如图1是某一遮阳篷支架从闭合到完全展开的一个过程,当遮阳篷支架完全闭合时,支架的若干支杆可看作共线.图2是遮阳篷支架完全展开时的一个示意图,支杆MN固定在垂直于地面的墙壁上,支杆CE与水平地面平行,且G,F,B三点共线,在支架展开过程中四边形ABCD始终是平行四边形,展开时∠GHB为90度.(1)若遮阳棚完全展开时,CE长2米,在与水平地面呈60°的太阳光照射下,CE在地面的影子有米(影子完全落在地面).(2)长支杆与短支杆的长度比(即CE与AD的长度比)是.7.(2024•长沙模拟)如图,在某小区内拐角处的一段道路上,有一儿童在C处玩耍,一辆汽车从被楼房遮挡的拐角另一侧的A处驶来(CM⊥DM,BD⊥DM,BC与DM相交于点O),已知OM=4米,CO=5米,DO=3米,AO=米,则汽车从A处前行的距离AB=米时,才能发现C处的儿童.8.(2024•灞桥区校级模拟)如图,为了估算河面的宽度,即EP的长,在离河岸D点2米远的B点,立一根长为1米的标杆AB,在河对岸的岸边有一块高为2.5米的安全警示牌MF,警示牌的顶端M在河里的倒影为点N,即PM=PN,两岸均高出水平面1.25米,即DE=FP=1.25米,经测量此时A、D、N三点在同一直线上,并且点M、F、P、N共线,点B、D、F共线,若AB、DE、MF均垂直于河面EP,求河宽EP是多少米?9.(2024•鄞州区模拟)国旗上的每颗星都是标准五角星,圆圆对五角星进行了较深入的研究:延长正五边形的各边直到不相邻的边相交,得到一个标准五角星.如图,正五边形ABCDE的边BA、DE的延长线相交于点F,∠EAF的平分线交EF于点M.(1)求证:AE2=EF•EM;(2)若AF=1,求AE的长.题型03位似变换【中考真题练】1.(2023•浙江)如图,在直角坐标系中,△ABC的三个顶点分别为A(1,2),B(2,1),C(3,2),现以原点O为位似中心,在第一象限内作与△ABC的位似比为2的位似图形△A′B′C′,则顶点C′的坐标是()A.(2,4) B.(4,2) C.(6,4) D.(5,4)2.(2023•烟台)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P为位似中心作正方形PA1A2A3,正方形PA4A5A6,…,按此规律作下去,所作正方形的顶点均在格点上,其中正方形PA1A2A3的顶点坐标分别为P(﹣3,0),A1(﹣2,1),A2(﹣1,0),A3(﹣2,﹣1),则顶点A100的坐标为()A.(31,34) B.(31,﹣34) C.(32,35) D.(32,0)3.在方格图中,以格点为顶点的三角形叫做格点三角形.在如图所示的平面直角坐标系中,格点△ABC、△DEF成位似关系,则位似中心的坐标为()A.(﹣1,0) B.(0,0) C.(0,1) D.(1,0)4.(2023•鄂州)如图,在平面直角坐标系中,△ABC与△A1B1C1位似,原点O是位似中心,且=3.若A(9,3),则A1点的坐标是.5.(2023•长春)如图,△ABC和△A'B'C'是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC与△A'B'C'的周长之比为.6.(2023•辽宁)如图,在平面直角坐标系中,四边形OABC的顶点坐标分别是O(0,0),A(1,0),B(2,3),C(﹣1,2),若四边形OA′B′C′与四边形OABC关于原点O位似,且四边形OA′B′C′的面积是四边形OABC面积的4倍,则第一象限内点B′的坐标为.【中考模拟练】1.(2024•凉州区一模)如图:△AOB与△A1OB1是以原点为位似中心的位似图形,且位似比为1:3,点B的坐标为(﹣1,2),则点B1的坐标为()A.(2,﹣4) B.(﹣2,4) C.(3,﹣6) D.(3,6)2.(2024•鞍山模拟)如图,正方形网格图中的△ABC与△A′B′C是位似关系图,则位似中心是()A.点R B.点P C.点Q D.点O3.(2024•酒泉一模)如图,四边形ABCD与四边形A′B′C′D′位似,点O是它们的位似中心,若OA:OA′=2:3,则CD:C′D′的值为()A.1:2 B.2:3 C.2:5 D.4:94.(2024•郸城县一模)如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为1:3,点A、B、E在x轴上,若正方形BEFG的边长为3,则D点坐标为()A.(,1) B.(,1) C.(,) D.(,)5.(2023•新化县模拟)如图,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是()A.(3,2) B.(﹣2,﹣3) C.(2,3)或(﹣2,﹣3) D.(3,2)或(﹣3,﹣2)6.(2024•新荣区一模)如图,A是反比例函数y=(x>0)图象上一点,点B、D在y轴正半轴上,△ABD是△COD关于点D的位似图形,且△ABD与△COD的位似比是1:3,△ABD的面积为1,则该反比例函数的表达式为.考点三:相似形综合相似三角形出综合题时,经常是相似的性质与其他几何图形的综合,特别是和其他如函数、特殊四边形、圆等考点一起出题时,基本都是填空压轴题和简答题压轴题。题型01相似形综合题【中考真题练】1.(2023•德阳)如图,⊙O的直径AB=10,DE是弦,AB⊥DE,=,sin∠BAC=,AD的延长线与CB的延长线相交于点F,DB的延长线与OE的延长线相交于点G,连接CG.下列结论中正确的个数是()①∠DBF=3∠DAB;②CG是⊙O的切线;③B,E两点间的距离是;④DF=.A.1 B.2 C.3 D.42.(2023•黑龙江)如图,在正方形ABCD中,点E,F分别是AB,BC上的动点,且AF⊥DE,垂足为G,将△ABF沿AF翻折,得到△AMF,AM交DE于点P,对角线BD交AF于点H,连接HM,CM,DM,BM,下列结论正确的是()①AF=DE;②BM∥DE;③若CM⊥FM,则四边形BHMF是菱形;④当点E运动到AB的中点,tan∠BHF=2;⑤EP•DH=2AG•BH.A.①②③④⑤ B.①②③⑤ C.①②③ D.①②⑤3.(2023•衢州)下面是勾股定理的一种证明方法:图1所示纸片中,∠ACB=90°(AC<BC),四边形ACDE,CBFG是正方形.过点C,B将纸片CBFG分别沿与AB平行、垂直两个方向剪裁成四部分,并与正方形ACDE,△ABC拼成图2.(1)若cos∠ABC=,△ABC的面积为16,则纸片Ⅲ的面积为.(2)若,则=.4.(2023•日照)如图,矩形ABCD中,AB=6,AD=8,点P在对角线BD上,过点P作MN⊥BD,交边AD,BC于点M,N,过点M作ME⊥AD交BD于点E,连接EN,BM,DN.下列结论:①EM=EN;②四边形MBND的面积不变;③当AM:MD=1:2时,S△MPE=;④BM+MN+ND的最小值是20.其中所有正确结论的序号是.5.(2023•武汉)问题提出如图(1),E是菱形ABCD边BC上一点,△AEF是等腰三角形,AE=EF,∠AEF=∠ABC=α(α≥90°),AF交CD于点G,探究∠GCF与α的数量关系.问题探究(1)先将问题特殊化,如图(2),当α=90°时,直接写出∠GCF的大小;(2)再探究一般情形,如图(1),求∠GCF与α的数量关系.问题拓展将图(1)特殊化,如图(3),当α=120°时,若,求的值.6.(2023•福建)如图1,在△ABC中,∠BAC=90°,AB=AC,D是AB边上不与A,B重合的一个定点.AO⊥BC于点O,交CD于点E.DF是由线段DC绕点D顺时针旋转90°得到的,FD,CA的延长线相交于点M.(1)求证:△ADE∽△FMC;(2)求∠ABF的度数;(3)若N是AF的中点,如图2,求证:ND=NO.7.(2023•南京)在平面内,将一个多边形先绕自身的顶点A旋转一个角度θ(0°<θ<180°),再将旋转后的多边形以点A为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为k,称这种变换为自旋转位似变换.若顺时针旋转,记作T(A,顺θ,k);若逆时针旋转,记作T(A,逆θ,k).例如:如图①,先将△ABC绕点B逆时针旋转50°,得到△A1BC1,再将△A1BC1以点B为位似中心缩小到原来的,得到△A2BC2,这个变换记作T(B,逆50°,).(1)如图②,△ABC经过T(C,顺60°,2)得到△A′B′C,用尺规作出△A′B′C.(保留作图痕迹)(2)如图③,△ABC经过T(B,逆α,k1)得到△EBD,△ABC经过T(C,顺β,k2)得到△FDC,连接AE,AF.求证:四边形AFDE是平行四边形.(3)如图④,在△ABC中,∠A=150°,AB=2,AC=1.若△AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论