




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,观察图中的尺规作图痕迹,下列说法错误的是()A. B. C. D.2.化简-5a·(2a2-ab),结果正确的是()A.-10a3-5ab B.-10a3-5a2b C.-10a2+5a2b D.-10a3+5a2b3.分式的值为0,则的值是A. B. C. D.4.如图,在直角△ABC中,,AB=AC,点D为BC中点,直角绕点D旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正确结论是()A.①②④ B.②③④ C.①②③ D.①②③④5.请你计算:(1-x)(1+x),(1-x)(1+x+x2),…,猜想(1-x)(1+x+x2+…+xn)的结果是()A.1-xn B.1+xn+1 C.1-xn+1 D.1+xn6.在中,,以的一边为边画等腰三角形,使得它的第三个顶点在的其他边上,则可以画出的不同的等腰三角形的个数最多可画几个?()A.9个 B.7个 C.6个 D.5个7.边长为a,b的长方形,它的周长为14,面积为10,则ab+ab的值为()A.35 B.70 C.140 D.2808.如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是()A.点A B.点B C.点C D.点D9.如图是我市某景点6月份内日每天的最高温度折线统计图,由图信息可知该景点这10天中,气温出现的频率是()A.3 B.0.5 C.0.4 D.0.310.下列从左到右的变形:;;;其中,正确的是A. B. C. D.二、填空题(每小题3分,共24分)11.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为__________.12.一个正多边形的每个外角为60°,那么这个正多边形的内角和是_____.13.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=_____度.14.如图,已知中,,是高和的交点,,则线段的长度为_____.15.已知,其中为正整数,则__________.16.计算:6x2÷2x=.17.如图,长方形纸片ABCD中,AB=6,BC=8,折叠纸片使AB边与对角线AC重合,点B与点F重合,折痕为AE,则EF的长是_________.18.如图,在中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=13,则的面积是________.三、解答题(共66分)19.(10分)计算:(1)(1+3)(1-3)(1+2)(1-2);(2)(3+2)2(3-2)2;(3)(3+32-6)(3-32-6).20.(6分)如图,点,分别在的边上,,,.求证:21.(6分)如图,直线y=3x+5与x轴相交于点A,与y轴相交于点B,(1)求A,B两点的坐标;(2)过点B作直线BP与x轴相交于点P,且使OP=3OA,求的面积.22.(8分)如图,,点、分别在、上运动(不与点重合).(1)如图1,是的平分线,的反方向延长线与的平分线交于点.①若,则为多少度?请说明理由.②猜想:的度数是否随、的移动发生变化?请说明理由.(2)如图2,若,,则的大小为度(直接写出结果);(3)若将“”改为“()”,且,,其余条件不变,则的大小为度(用含、的代数式直接表示出米).23.(8分)已知:两个实数满足.(1)求的值;(2)求的值.24.(8分)已知点A(0,4)、C(﹣2,0)在直线l:y=kx+b上,l和函数y=﹣4x+a的图象交于点B(1)求直线l的表达式;(2)若点B的横坐标是1,求关于x、y的方程组的解及a的值.(3)若点A关于x轴的对称点为P,求△PBC的面积.25.(10分)如图,直线y=-x+8与x轴、y轴分别交于点A和点B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B'处.(1)求A、B两点的坐标;(2)求S△ABO·(3)求点O到直线AB的距离.(4)求直线AM的解析式.26.(10分)设,求代数式和的值
参考答案一、选择题(每小题3分,共30分)1、A【分析】由作法知,∠DAE=∠B,进而根据同位角相等,两直线平行可知AE∥BC,再由平行线的性质可得∠C=∠EAC.【详解】由作法知,∠DAE=∠B,∴AE∥BC,∴∠C=∠EAC,∴B、C、D正确;无法说明A正确.故选A.【点睛】本题主要考查了尺规作图,平行线的性质与判定的综合应用,熟练掌握平行线的性质与判定方法是解答本题的关键.解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.2、D【解析】试题分析:根据单项式乘以多项式的计算法则进行计算,原式=,故选D.3、B【分析】分式的值为1的条件是:(1)分子为1;(2)分母不为1.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】由式的值为1,得,且.解得.故选:.【点睛】此题考查分式值为1,掌握分式值为1的两个条件是解题的关键.4、C【分析】根据等腰直角三角形的性质可得∠CAD=∠B=45°,根据同角的余角相等求出∠ADF=∠BDE,然后利用“角边角”证明△BDE和△ADF全等,判断出③正确;根据全等三角形对应边相等可得DE=DF、BE=AF,从而得到△DEF是等腰直角三角形,判断出①正确;再求出AE=CF,判断出②正确;根据BE+CF=AF+AE,利用三角形的任意两边之和大于第三边可得BE+CF>EF,判断出④错误.【详解】∵∠B=45°,AB=AC,
∴△ABC是等腰直角三角形,
∵点D为BC中点,
∴AD=CD=BD,AD⊥BC,∠CAD=45°,
∴∠CAD=∠B,
∵∠MDN是直角,
∴∠ADF+∠ADE=90°,
∵∠BDE+∠ADE=∠ADB=90°,
∴∠ADF=∠BDE,
在△BDE和△ADF中,,
∴△BDE≌△ADF(ASA),故③正确;
∴DE=DF、BE=AF,
又∵∠MDN是直角,
∴△DEF是等腰直角三角形,故①正确;
∵AE=AB-BE,CF=AC-AF,
∴AE=CF,故②正确;
∵BE+CF=AF+AE>EF,
∴BE+CF>EF,
故④错误;
综上所述,正确的结论有①②③;
故选:C.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、同角的余角相等的性质、三角形三边的关系;熟练掌握等腰直角三角形的性质,并能进行推理论证是解决问题的关键.5、C【分析】各式计算得到结果,归纳总结得到一般性规律,写出即可.【详解】解:(1-x)(1+x)=1-x2,(1-x)(1+x+x2)=1-x3,……猜想(1-x)(1+x+x2+…+xn)=1-xn+1,
故选C【点睛】此题考查了平方差公式,以及规律型:数字的变化类,弄清题中的规律是解本题的关键.6、B【分析】先以三个顶点分别为圆心,再以每个顶点所在的较短边为半径画弧,即可确定等腰三角形的第三个顶点;也可以作三边的垂直平分线确定等腰三角形的第三个顶点即得.【详解】解:①如图1,以B为圆心,BC长为半径画弧,交AB于点D,则BCD就是等腰三角形;②如图2,以A为圆心,AC长为半径画弧,交AB于点E,则ACE就是等腰三角形;③如图3,以C为圆心,BC长为半径画弧,交AB于M,交AC于点F,则BCM、BCF是等腰三角形;④如图4,作AC的垂直平分线交AB于点H,则ACH就是等腰三角形;⑤如图5,作AB的垂直平分线交AC于点G,则AGB就是等腰三角形;⑥如图6,作BC的垂直平分线交AB于I,则BCI就是等腰三角形.故选:B.【点睛】本题考查等腰三角形的判定的应用,通过作垂直平分线或者画弧的方法确定相等的边是解题关键.7、B【解析】∵长方形的面积为10,∴ab=10,∵长方形的周长为14,∴2(a+b)=14,∴a+b=7.对待求值的整式进行因式分解,得a2b+ab2=ab(a+b),代入相应的数值,得.故本题应选B.8、B【分析】,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【详解】,,,,因为0.268<0.732<1.268,所以表示的点与点B最接近,故选B.9、D【分析】通过折线统计图和频率的知识求解.【详解】解:由图知10天的气温按从小到大排列为:22.3,24,24,26,26,26,26.5,28,30,30,26有3个,因而26出现的频率是:=0.3.故选D.【点睛】本题考查了频率的计算公式,理解公式是关键.10、B【解析】根据分式的基本性质进行计算并作出正确的判断.【详解】①,当a=1时,该等式不成立,故①错误;②,分式的分子、分母同时乘以b,等式仍成立,即,故②正确;③,当c=1时,该等式不成立,故③错误;④,因为x2+1≠1,即分式ab的分子、分母同时乘以(x2+1),等式仍成立,即成立,故④正确;综上所述,正确的②④.故选:B.【点睛】本题考查了分式的基本性质,注意分式的基本性质中分子、分母乘以(或除以)的数或式子一定不是1.二、填空题(每小题3分,共24分)11、5.6×10-2【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将0.056用科学记数法表示为5.6×10-2,故答案为:5.6×10-2【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12、720°.【解析】先利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.【详解】这个正多边形的边数为=6,所以这个正多边形的内角和=(6﹣2)×180°=720°,故答案为720°.【点睛】本题考查了多边形内角与外角:内角和定理:(n﹣2)•180(n≥3)且n为整数);多边形的外角和等于360度.13、1【分析】根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,可求∠ABC=∠BAD=1°.【详解】∵AD⊥BC于D,BE⊥AC于E∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE(对顶角相等)∴∠EAF=∠DBF,在Rt△ADC和Rt△BDF中,,∴△ADC≌△BDF(AAS),∴BD=AD,即∠ABC=∠BAD=1°.故答案为1.【点睛】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.14、1【分析】根据和得出为等腰直角三角形,从而有,通过等量代换得出,然后利用ASA可证,则有.【详解】为等腰直角三角形在和中,故答案为:1.【点睛】本题主要考查等腰直角三角形的性质,全等三角形的判定及性质,掌握全等三角形的判定方法及性质是解题的关键.15、7、8或13【分析】已知等式左边利用多项式乘以多项式法则变形,利用多项式相等的条件确定出的值即可.【详解】解:,,,均为正整数,,又,,.故答案为:7、8或13.【点睛】此题考查了多项式乘以多项式,以及多项式相等的条件,熟练掌握多项式乘以多项式法则是解本题的关键16、3x.【解析】试题解析:6x2÷2x=3x.考点:单项式除以单项式.17、1【分析】求出AC的长度;证明EF=EB(设为x),利用等面积法求出x即可解决问题.【详解】解:∵四边形ABCD为矩形,
∴∠B=90°,
由勾股定理得:AC2=AB2+BC2,
∴AC=10;
由题意得:
∠AFE=∠B=90°,
AF=AB=6,EF=EB(设为x),∴,即,解得.故答案为:1.【点睛】本题考查折叠的性质,矩形的性质.掌握等面积法是解题关键.18、1【分析】先根据作图过程可得AP为的角平分线,再根据角平分线的性质可得点D到AB的距离,然后根据三角形的面积公式即可得.【详解】由题意得:AP为的角平分线点D到AB的距离为4,即的边AB上的高为4则的面积是故答案为:1.【点睛】本题考查了角平分线的作图过程与性质,熟记角平分线的性质是解题关键.三、解答题(共66分)19、(1)2;(2)1;(3)-9-62.【解析】根据二次根式的运算规律及平方差公式或完全平方公式进行运算.【详解】(1)原式=(1−3)×(1−2)=2;(2)原式=3(3)原式=(==3-6=-9-6【点睛】考查二次根式的混合运算,熟练掌握完全平方公式以及平方差公式是解题的关键.20、见解析【分析】首先判定△ADE是等边三角形,从而得到∠ADE=∠AED=60°.接着根据平行线的性质得到∠B=∠C=60°,所以△ABC是等边三角形,所以AB=BC=AC.【详解】证明:∵,∴是等边三角形∴∵∴,∴∴【点睛】本题考查到了等边三角形的性质与判定和平行线的性质,难度不大.21、(1);(2)或【分析】(1)根据A、B点的坐标特征解答即可;(2)由OA=、OB=5,得到OP=3,分当点P在A点的左侧和右侧两种情况运用待定系数法解答即可.【详解】解:(1)已知直线y=3x+5,令x=0,得y=5,令y=0,3x+5=0,得点A坐标,点B坐标(0,5);(2)由(1)知A(-,B(0,5),∴OA=、OB=5,∵OP=3OA∴OP=5,OA=,若点P在A点左侧,则点P坐标为(-5,0),AP=OP-OA=;若点P在A点右侧,则点P坐标为(5,0),AP=OP+OA=.【点睛】本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征,掌握待定系数法和一次函数图像上点的特征是解答本题的关键.22、(1)①45°,理由见解析;②∠D的度数不变;理由见解析(2)30;(3)【分析】(1)①先求出∠ABN=150°,再根据角平分线得出∠CBA=∠ABN=75°、∠BAD=∠BAO=30°,最后由外角性质可得∠D度数;②设∠BAD=α,利用外角性质和角平分线性质求得∠ABC=45°+α,利用∠D=∠ABC-∠BAD可得答案;(2)设∠BAD=α,得∠BAO=3α,继而求得∠ABN=90°+3α、∠ABC=30°+α,根据∠D=∠ABC-∠BAD可得答案;(3)设∠BAD=β,分别求得∠BAO=nβ、∠ABN=∠AOB+∠BAO=α+nβ、∠ABC=+β,由∠D=∠ABC-∠BAD得出答案.【详解】解:(1)①45°∵∠BAO=60°,∠MON=90°,∴∠ABN=150°,∵BC平分∠ABN、AD平分∠BAO,∴∠CBA=∠ABN=75°,∠BAD=∠BAO=30°∴∠D=∠CBA-∠BAD=45°,②∠D的度数不变.理由是:设∠BAD=α,∵AD平分∠BAO,∴∠BAO=2α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+2α,∵BC平分∠ABN,∴∠ABC=45°+α,∴∠D=∠ABC-∠BAD=45°+α-α=45°;(2)设∠BAD=α,
∵∠BAD=∠BAO,
∴∠BAO=3α,
∵∠AOB=90°,
∴∠ABN=∠AOB+∠BAO=90°+3α,
∵∠ABC=∠ABN,
∴∠ABC=30°+α,
∴∠D=∠ABC-∠BAD=30°+α-α=30°;(3)设∠BAD=β,
∵∠BAD=∠BAO,
∴∠BAO=nβ,
∵∠AOB=α°,
∴∠ABN=∠AOB+∠BAO=α+nβ,
∵∠ABC=∠ABN,
∴∠ABC=+β,
∴∠D=∠ABC-∠BAD=+β-β=.【点睛】本题主要考查角平分线和外角的性质,熟练掌握三角形的外角性质和角平分线的性质是解题的关键.23、(1)7;(2)-1.【分析】(1)利用完全平方和公式易求解;(2)先通分再利用完全平方和公式即可.【详解】解:(1)(2)【点睛】本题主要考查了完全平方公式,灵活利用完全平方公式进行配方是解题的关键.24、(1)y=2x+4(2)x=1,y=6;a=10(3)1【解析】(1)由于点A、C在直线上,可用待定系数法确定直线l的表达式;(2)先求出点B的坐标,即得方程组的解.代入组中方程求出a即可;(3)由于S△BPC=S△PAB+S△PAC,分别求出△PBA和△PAC的面积即可.【详解】(1)由于点A、C在直线l上,∴,∴k=2,b=4所以直线l的表达式为:y=2x+4(2)由于点B在直线l上,当x=1时,y=2+4=6所以点B的坐标为(1,6)因为点B是直线l与直线y=﹣4x+a的交点,所以关于x、y的方程组的解为,把x=1,y=6代入y=﹣4x+a中,得a=10;(3)如图:因为点A与点P关于x轴对称,所以点P(0,﹣4),所以AP=4+4=8,OC=2,所以S△BPC=S△PAB+S△PAC=×8×1+×8×2=4+8=1.【点睛】本题考查了待定系数法确定函数解析式、三角形的面积、直线与方程组的关系等知识点.方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 成都体育学院《混合动力汽车技术》2023-2024学年第二学期期末试卷
- 郑州铁路职业技术学院《CIS设计》2023-2024学年第二学期期末试卷
- 运城学院《资本市场与证券投资》2023-2024学年第二学期期末试卷
- 徽商职业学院《教育与心理研究方法》2023-2024学年第二学期期末试卷
- 河北传媒学院《客舱实务综合训练》2023-2024学年第二学期期末试卷
- 秦皇岛工业职业技术学院《建筑结构设计软件应用》2023-2024学年第二学期期末试卷
- 杨凌职业技术学院《工业网络技术及应用》2023-2024学年第二学期期末试卷
- 复式楼层设计方案
- 江南大学《戏剧元素训练》2023-2024学年第二学期期末试卷
- 危险化学品企业“5.6 设备完整性”解读与应用指南(雷泽佳编制-2025A1)
- 数字贸易学 课件 第1章 导论
- 《阵列式消声器技术要求》(T-CAEPI 17-2019)
- (2024版)应对群体性事件的策略与技巧
- 社区警务工作培训
- 角磨机切割作业的应急预案
- 搪瓷制品的艺术创作与文化创意
- 山西省众辉公司招聘考试题库
- 供水公司招聘考试题库及答案
- 现代室内设计发展趋势分析
- 农业企业计划书
- 2023届天津市河东区高三二模语文试题(解析)
评论
0/150
提交评论