版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届福建省示范名校高三下学期期末联考数学试题试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的定义域为,则函数的定义域为()A. B.C. D.2.已知双曲线:,,为其左、右焦点,直线过右焦点,与双曲线的右支交于,两点,且点在轴上方,若,则直线的斜率为()A. B. C. D.3.若实数满足的约束条件,则的取值范围是()A. B. C. D.4.复数的虚部是()A. B. C. D.5.已知m为实数,直线:,:,则“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件6.如图,抛物线:的焦点为,过点的直线与抛物线交于,两点,若直线与以为圆心,线段(为坐标原点)长为半径的圆交于,两点,则关于值的说法正确的是()A.等于4 B.大于4 C.小于4 D.不确定7.已知椭圆:的左、右焦点分别为,,过的直线与轴交于点,线段与交于点.若,则的方程为()A. B. C. D.8.已知是的共轭复数,则()A. B. C. D.9.一小商贩准备用元钱在一批发市场购买甲、乙两种小商品,甲每件进价元,乙每件进价元,甲商品每卖出去件可赚元,乙商品每卖出去件可赚元.该商贩若想获取最大收益,则购买甲、乙两种商品的件数应分别为()A.甲件,乙件 B.甲件,乙件 C.甲件,乙件 D.甲件,乙件10.某几何体的三视图如图所示,则此几何体的体积为()A. B.1 C. D.11.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,它历史悠久,风格独特,神兽人们喜爱.下图即是一副窗花,是把一个边长为12的大正方形在四个角处都剪去边长为1的小正方形后剩余的部分,然后在剩余部分中的四个角处再剪出边长全为1的一些小正方形.若在这个窗花内部随机取一个点,则该点不落在任何一个小正方形内的概率是()A. B. C. D.12.复数在复平面内对应的点为则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若的展开式中只有第六项的二项式系数最大,则展开式中各项的系数和是________.14.已知,椭圆的方程为,双曲线方程为,与的离心率之积为,则的渐近线方程为________.15.已知,,则与的夹角为.16.函数的值域为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为;直线l的参数方程为(t为参数).直线l与曲线C分别交于M,N两点.(1)写出曲线C的直角坐标方程和直线l的普通方程;(2)若点P的极坐标为,,求的值.18.(12分)在平面直角坐标系中,曲线(为参数),以坐标原点为极点,轴的正半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的普通方程;(2)若P,Q分别为曲线,上的动点,求的最大值.19.(12分)如图,在四棱锥中,,,,和均为边长为的等边三角形.(1)求证:平面平面;(2)求二面角的余弦值.20.(12分)如图,设A是由个实数组成的n行n列的数表,其中aij(i,j=1,2,3,…,n)表示位于第i行第j列的实数,且aij{1,-1}.记S(n,n)为所有这样的数表构成的集合.对于,记ri(A)为A的第i行各数之积,cj(A)为A的第j列各数之积.令a11a12…a1na21a22a2n…………an1an2…ann(Ⅰ)请写出一个AS(4,4),使得l(A)=0;(Ⅱ)是否存在AS(9,9),使得l(A)=0?说明理由;(Ⅲ)给定正整数n,对于所有的AS(n,n),求l(A)的取值集合.21.(12分)在直角坐标系中,曲线上的任意一点到直线的距离比点到点的距离小1.(1)求动点的轨迹的方程;(2)若点是圆上一动点,过点作曲线的两条切线,切点分别为,求直线斜率的取值范围.22.(10分)某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出1盒该产品获利50元,未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季进了160盒该产品,以(单位:盒,)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.(1)根据直方图估计这个开学季内市场需求量的平均数和众数;(2)将表示为的函数;(3)以需求量的频率作为各需求量的概率,求开学季利润不少于4800元的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】试题分析:由题意,得,解得,故选A.考点:函数的定义域.2.D【解析】
由|AF2|=3|BF2|,可得.设直线l的方程x=my+,m>0,设,,即y1=﹣3y2①,联立直线l与曲线C,得y1+y2=-②,y1y2=③,求出m的值即可求出直线的斜率.【详解】双曲线C:,F1,F2为左、右焦点,则F2(,0),设直线l的方程x=my+,m>0,∵双曲线的渐近线方程为x=±2y,∴m≠±2,设A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,联立①②得,联立①③得,,即:,,解得:,直线的斜率为,故选D.本题考查直线与双曲线的位置关系,考查韦达定理的运用,考查向量知识,属于中档题.3.B【解析】
根据所给不等式组,画出不等式表示的可行域,将目标函数化为直线方程,平移后即可确定取值范围.【详解】实数满足的约束条件,画出可行域如下图所示:将线性目标函数化为,则将平移,平移后结合图像可知,当经过原点时截距最小,;当经过时,截距最大值,,所以线性目标函数的取值范围为,故选:B.本题考查了线性规划的简单应用,线性目标函数取值范围的求法,属于基础题.4.C【解析】因为,所以的虚部是,故选C.5.A【解析】
根据直线平行的等价条件,求出m的值,结合充分条件和必要条件的定义进行判断即可.【详解】当m=1时,两直线方程分别为直线l1:x+y﹣1=0,l2:x+y﹣2=0满足l1∥l2,即充分性成立,当m=0时,两直线方程分别为y﹣1=0,和﹣2x﹣2=0,不满足条件.当m≠0时,则l1∥l2⇒,由得m2﹣3m+2=0得m=1或m=2,由得m≠2,则m=1,即“m=1”是“l1∥l2”的充要条件,故答案为:A(1)本题主要考查充要条件的判断,考查两直线平行的等价条件,意在考查学生对这些知识的掌握水平和分析推理能力.(2)本题也可以利用下面的结论解答,直线和直线平行,则且两直线不重合,求出参数的值后要代入检验看两直线是否重合.6.A【解析】
利用的坐标为,设直线的方程为,然后联立方程得,最后利用韦达定理求解即可【详解】据题意,得点的坐标为.设直线的方程为,点,的坐标分别为,.讨论:当时,;当时,据,得,所以,所以.本题考查直线与抛物线的相交问题,解题核心在于联立直线与抛物线的方程,属于基础题7.D【解析】
由题可得,所以,又,所以,得,故可得椭圆的方程.【详解】由题可得,所以,又,所以,得,,所以椭圆的方程为.故选:D本题主要考查了椭圆的定义,椭圆标准方程的求解.8.A【解析】
先利用复数的除法运算法则求出的值,再利用共轭复数的定义求出a+bi,从而确定a,b的值,求出a+b.【详解】i,∴a+bi=﹣i,∴a=0,b=﹣1,∴a+b=﹣1,故选:A.本题主要考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.9.D【解析】
由题意列出约束条件和目标函数,数形结合即可解决.【详解】设购买甲、乙两种商品的件数应分别,利润为元,由题意,画出可行域如图所示,显然当经过时,最大.故选:D.本题考查线性目标函数的线性规划问题,解决此类问题要注意判断,是否是整数,是否是非负数,并准确的画出可行域,本题是一道基础题.10.C【解析】该几何体为三棱锥,其直观图如图所示,体积.故选.11.D【解析】
由几何概型可知,概率应为非小正方形面积与窗花面积的比,即可求解.【详解】由题,窗花的面积为,其中小正方形的面积为,所以所求概率,故选:D本题考查几何概型的面积公式的应用,属于基础题.12.B【解析】
求得复数,结合复数除法运算,求得的值.【详解】易知,则.故选:B本小题主要考查复数及其坐标的对应,考查复数的除法运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
由题意得出展开式中共有11项,;再令求得展开式中各项的系数和.【详解】由的展开式中只有第六项的二项式系数最大,所以展开式中共有11项,所以;令,可求得展开式中各项的系数和是:.故答案为:1.本小题主要考查二项式展开式的通项公式的运用,考查二项式展开式各项系数和的求法,属于基础题.14.【解析】
求出椭圆与双曲线的离心率,根据离心率之积的关系,然后推出关系,即可求解双曲线的渐近线方程.【详解】,椭圆的方程为,的离心率为:,双曲线方程为,的离心率:,与的离心率之积为,,,的渐近线方程为:,即.故答案为:本题考查了椭圆、双曲线的几何性质,掌握椭圆、双曲线的离心率公式,属于基础题.15.【解析】
根据已知条件,去括号得:,16.【解析】
利用配方法化简式子,可得,然后根据观察法,可得结果.【详解】函数的定义域为所以函数的值域为故答案为:本题考查的是用配方法求函数的值域问题,属基础题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1),;(2)2.【解析】
(1)由得,求出曲线的直角坐标方程.由直线的参数方程消去参数,即求直线的普通方程;(2)将直线的参数方程化为标准式(为参数),代入曲线的直角坐标方程,韦达定理得,点在直线上,则,即可求出的值.【详解】(1)由可得,即,即,曲线的直角坐标方程为,由直线的参数方程(t为参数),消去得,即直线的普通方程为.(Ⅱ)点的直角坐标为,则点在直线上.将直线的参数方程化为标准式(为参数),代入曲线的直角坐标方程,整理得,直线与曲线交于两点,,即.设点所对应的参数分别为,由韦达定理可得,.点在直线上,,.本题考查参数方程、极坐标方程和普通方程的互化及应用,属于中档题.18.(1),;(2)【解析】试题分析:(1)由消去参数,可得的普通方程,由可得的普通方程;(2)设为曲线上一点,点到曲线的圆心的距离,结合可得最值,的最大值为,从而得解.试题解析:(1)的普通方程为.∵曲线的极坐标方程为,∴曲线的普通方程为,即.(2)设为曲线上一点,则点到曲线的圆心的距离.∵,∴当时,d有最大值.又∵P,Q分别为曲线,曲线上动点,∴的最大值为.19.(1)见证明;(2)【解析】
(1)取的中点,连接,要证平面平面,转证平面,即证,即可;(2)以为坐标原点,以为轴正方向,建立如图所示的空间直角坐标系,分别求出平面与平面的法向量,代入公式,即可得到结果.【详解】(1)取的中点,连接,因为均为边长为的等边三角形,所以,,且因为,所以,所以,又因为,平面,平面,所以平面.又因为平面,所以平面平面.(2)因为,为等边三角形,所以,又因为,所以,,在中,由正弦定理,得:,所以.以为坐标原点,以为轴正方向,建立如图所示的空间直角坐标系,则,,,,,设平面的法向量为,则,即,令,则平面的一个法向量为,依题意,平面的一个法向量所以故二面角的余弦值为.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.20.(Ⅰ)答案见解析;(Ⅱ)不存在,理由见解析;(Ⅲ)【解析】
(Ⅰ)可取第一行都为-1,其余的都取1,即满足题意;(Ⅱ)用反证法证明:假设存在,得出矛盾,从而证明结论;(Ⅲ)通过分析正确得出l(A)的表达式,以及从A0如何得到A1,A2……,以此类推可得到Ak.【详解】(Ⅰ)答案不唯一,如图所示数表符合要求.(Ⅱ)不存在AS(9,9),使得l(A)=0,证明如下:假如存在,使得.因为,,所以,,...,,,,...,这18个数中有9个1,9个-1.令.一方面,由于这18个数中有9个1,9个-1,从而①,另一方面,表示数表中所有元素之积(记这81个实数之积为m);也表示m,从而②,①,②相矛盾,从而不存在,使得.(Ⅲ)记这个实数之积为p.一方面,从“行”的角度看,有;另一方面,从“列”的角度看,有;从而有③,注意到,,下面考虑,,...,,,,...,中-1的个数,由③知,上述2n个实数中,-1的个数一定为偶数,该偶数记为,则1的个数为2n-2k,所以,对数表,显然.将数表中的由1变为-1,得到数表,显然,将数表中的由1变为-1,得到数表,显然,依此类推,将数表中的由1变为-1,得到数表,即数表满足:,其余,所以,,所以,由k的任意性知,l(A)的取值集合为.本题为数列的创新应用题,考查数学分析与思考能力及推理求解能力,解题关键是读懂题意,根据引入的概念与性质进行推理求解,属于较难题.21.(1);(2)【解析】
(1)设,根据题意可得点的轨迹方程满足的等式,化简即可求得动点的轨迹的方程;(2)设出切线的斜率分别为,切点,,点,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 财险业务建议课件
- 2026年安徽中医药高等专科学校高职单招职业适应性测试参考题库有答案解析
- 基因检测与精准医疗技术
- 2026年湖南工艺美术职业学院单招职业技能考试参考题库带答案解析
- 2026年福建艺术职业学院单招综合素质考试参考题库带答案解析
- 中医与现代医学结合研究
- 护理护理质量改进与提升
- 医院财务状况与预算执行总结
- 医院营养膳食管理人员职业素养
- XX公司年产10万吨铜加工(年产纯铜杆(无氧铜杆)7万吨、2万吨铜排、1万吨铜丝)项目环评报告表
- 四年级数学上册总复习教案北师大版
- 辽宁省鞍山市海城市东部集团2024-2025学年九年级上学期11月期中历史试题
- BDAccuriC6Plus基础操作流程
- 江苏省2021年普通高中学业水平合格性考试数学试题(解析版)
- 《大学生美育》 课件 第七章 艺术美
- 电力部门春节安全生产培训
- 原辅材料领料申请单
- 2023年个税工资表
- 2023新青年新机遇新职业发展趋势白皮书-人民数据研究院
- 管理学原理教材-大学适用
- 变电站一次侧设备温度在线监测系统设计
评论
0/150
提交评论