2021-2022学年黑龙江省哈尔滨市呼兰区重点中学中考数学模拟预测题含解析_第1页
2021-2022学年黑龙江省哈尔滨市呼兰区重点中学中考数学模拟预测题含解析_第2页
2021-2022学年黑龙江省哈尔滨市呼兰区重点中学中考数学模拟预测题含解析_第3页
2021-2022学年黑龙江省哈尔滨市呼兰区重点中学中考数学模拟预测题含解析_第4页
2021-2022学年黑龙江省哈尔滨市呼兰区重点中学中考数学模拟预测题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022学年黑龙江省哈尔滨市呼兰区重点中学中考数学模拟预测题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若代数式有意义,则实数x的取值范围是()A.x=0 B.x=2 C.x≠0 D.x≠22.如图,AB是⊙O的切线,半径OA=2,OB交⊙O于C,∠B=30°,则劣弧的长是()A.π B. C.π D.π3.下列图形中,不是中心对称图形的是()A.平行四边形 B.圆 C.等边三角形 D.正六边形4.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>-1时,y的值随x值的增大而增大.其中正确的结论有()A.1个 B.2个 C.3个 D.4个5.如图,小刚从山脚A出发,沿坡角为的山坡向上走了300米到达B点,则小刚上升了()A.米 B.米 C.米 D.米6.如图是一个几何体的三视图,则这个几何体是()A. B. C. D.7.济南市某天的气温:-5~8℃,则当天最高与最低的温差为()A.13 B.3 C.-13 D.-38.如图,△ABC中,∠ACB=90°,∠A=30°,AB=1.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A.B.C.D.9.在下列二次函数中,其图象的对称轴为的是A. B. C. D.10.下面几何的主视图是()A. B. C. D.11.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2﹣5B.y=(x+2)2+5C.y=(x﹣2)2﹣5D.y=(x﹣2)2+512.函数在同一直角坐标系内的图象大致是()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:(π﹣3)0+(﹣)﹣1=_____.14.如图,在平面直角坐标系中,已知点A(﹣4,0)、B(0,3),对△AOB连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第(5)个三角形的直角顶点的坐标是_____,第(2018)个三角形的直角顶点的坐标是______.15.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于.16.边长为6的正六边形外接圆半径是_____.17.如图,AB为⊙0的弦,AB=6,点C是⊙0上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是______________.18.函数的自变量x的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:销售单价x(元/kg)

120

130

180

每天销量y(kg)

100

95

70

设y与x的关系是我们所学过的某一种函数关系.(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?20.(6分)阅读材料:对于线段的垂直平分线我们有如下结论:到线段两个端点距离相等的点在线段的垂直平分线上.即如图①,若PA=PB,则点P在线段AB的垂直平分线上请根据阅读材料,解决下列问题:如图②,直线CD是等边△ABC的对称轴,点D在AB上,点E是线段CD上的一动点(点E不与点C、D重合),连结AE、BE,△ABE经顺时针旋转后与△BCF重合.(I)旋转中心是点,旋转了(度);(II)当点E从点D向点C移动时,连结AF,设AF与CD交于点P,在图②中将图形补全,并探究∠APC的大小是否保持不变?若不变,请求出∠APC的度数;若改变,请说出变化情况.21.(6分)为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.若用户的月用水量不超过15吨,每吨收水费4元;用户的月用水量超过15吨,超过15吨的部分,按每吨6元收费.(I)根据题意,填写下表:月用水量(吨/户)41016……应收水费(元/户)40……(II)设一户居民的月用水量为x吨,应收水费y元,写出y关于x的函数关系式;(III)已知用户甲上个月比用户乙多用水6吨,两户共收水费126元,求他们上个月分别用水多少吨?22.(8分)已知一个二次函数的图象经过A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四点,求这个函数解析式以及点C的坐标.23.(8分)在平面直角坐标系xOy中,抛物线,与x轴交于点C,点C在点D的左侧,与y轴交于点A.求抛物线顶点M的坐标;若点A的坐标为,轴,交抛物线于点B,求点B的坐标;在的条件下,将抛物线在B,C两点之间的部分沿y轴翻折,翻折后的图象记为G,若直线与图象G有一个交点,结合函数的图象,求m的取值范围.24.(10分)边长为6的等边△ABC中,点D,E分别在AC,BC边上,DE∥AB,EC=2如图1,将△DEC沿射线EC方向平移,得到△D′E′C′,边D′E′与AC的交点为M,边C′D′与∠ACC′的角平分线交于点N.当CC′多大时,四边形MCND′为菱形?并说明理由.如图2,将△DEC绕点C旋转∠α(0°<α<360°),得到△D′E′C,连接AD′,BE′.边D′E′的中点为P.①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由;②连接AP,当AP最大时,求AD′的值.(结果保留根号)25.(10分)如图,已知函数(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E.若AC=OD,求a、b的值;若BC∥AE,求BC的长.26.(12分)如图1,在等边三角形中,为中线,点在线段上运动,将线段绕点顺时针旋转,使得点的对应点落在射线上,连接,设(且).(1)当时,①在图1中依题意画出图形,并求(用含的式子表示);②探究线段,,之间的数量关系,并加以证明;(2)当时,直接写出线段,,之间的数量关系.27.(12分)已知点O是正方形ABCD对角线BD的中点.(1)如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB于点M,交CD于点N.①∠AEM=∠FEM;②点F是AB的中点;(2)如图2,若点E是OD上一点,点F是AB上一点,且使,请判断△EFC的形状,并说明理由;(3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当时,请猜想的值(请直接写出结论).

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】

根据分式的分母不等于0即可解题.【详解】解:∵代数式有意义,∴x-2≠0,即x≠2,故选D.【点睛】本题考查了分式有意义的条件,属于简单题,熟悉分式有意义的条件是解题关键.2、C【解析】

由切线的性质定理得出∠OAB=90°,进而求出∠AOB=60°,再利用弧长公式求出即可.【详解】∵AB是⊙O的切线,∴∠OAB=90°,∵半径OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧ACˆ的长是:=,故选:C.【点睛】本题考查了切线的性质,圆周角定理,弧长的计算,解题的关键是先求出角度再用弧长公式进行计算.3、C【解析】

根据中心对称图形的定义依次判断各项即可解答.【详解】选项A、平行四边形是中心对称图形;选项B、圆是中心对称图形;选项C、等边三角形不是中心对称图形;选项D、正六边形是中心对称图形;故选C.【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.4、B【解析】

根据抛物线的对称轴即可判定①;观察图象可得,当x=-3时,y<0,由此即可判定②;观察图象可得,当x=1时,y>0,由此即可判定③;观察图象可得,当x>2时,y的值随x值的增大而增大,即可判定④.【详解】由抛物线的对称轴为x=2可得-b观察图象可得,当x=-3时,y<0,即9a-3b+c<0,所以a+c<观察图象可得,当x=1时,y>0,即a+b+c>0,③正确;观察图象可得,当x>2时,y的值随x值的增大而增大,④错误.综上,正确的结论有2个.故选B.【点睛】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.5、A【解析】

利用锐角三角函数关系即可求出小刚上升了的高度.【详解】在Rt△AOB中,∠AOB=90°,AB=300米,BO=AB•sinα=300sinα米.故选A.【点睛】此题主要考查了解直角三角形的应用,根据题意构造直角三角形,正确选择锐角三角函数得出AB,BO的关系是解题关键.6、B【解析】试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B.考点:由三视图判断几何体.7、A【解析】由题意可知,当天最高温与最低温的温差为8-(-5)=13℃,故选A.8、D【解析】解:当点Q在AC上时,∵∠A=30°,AP=x,∴PQ=xtan30°=33x,∴y=12×AP×PQ=12×x×33当点Q在BC上时,如下图所示:∵AP=x,AB=1,∠A=30°,∴BP=1﹣x,∠B=60°,∴PQ=BP•tan60°=3(1﹣x),∴SΔAPQ=12AP•PQ=12点睛:本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在BC上这种情况.9、A【解析】y=(x+2)2的对称轴为x=–2,A正确;y=2x2–2的对称轴为x=0,B错误;y=–2x2–2的对称轴为x=0,C错误;y=2(x–2)2的对称轴为x=2,D错误.故选A.1.10、B【解析】

主视图是从物体正面看所得到的图形.【详解】解:从几何体正面看故选B.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.11、A【解析】

直接根据“上加下减,左加右减”的原则进行解答即可.【详解】抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移1个单位后的抛物线的顶点坐标为(﹣2,﹣1),所以,平移后的抛物线的解析式为y=(x+2)2﹣1.故选:A.【点睛】本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键.12、C【解析】

根据a、b的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【详解】当a>0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=->0,且a>0,则b<0,但B中,一次函数a>0,b>0,排除B.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、-1【解析】

先计算0指数幂和负指数幂,再相减.【详解】(π﹣3)0+(﹣)﹣1,=1﹣3,=﹣1,故答案是:﹣1.【点睛】考查了0指数幂和负指数幂,解题关键是运用任意数的0次幂为1,a-1=.14、(16,)(8068,)【解析】

利用勾股定理列式求出AB的长,再根据图形写出第(5)个三角形的直角顶点的坐标即可;观察图形不难发现,每3个三角形为一个循环组依次循环,用2018除以3,根据商和余数的情况确定出第(2018)个三角形的直角顶点到原点O的距离,然后写出坐标即可.【详解】∵点A(﹣4,0),B(0,3),∴OA=4,OB=3,∴AB==5,∴第(2)个三角形的直角顶点的坐标是(4,);∵5÷3=1余2,∴第(5)个三角形的直角顶点的坐标是(16,),∵2018÷3=672余2,∴第(2018)个三角形是第672组的第二个直角三角形,其直角顶点与第672组的第二个直角三角形顶点重合,∴第(2018)个三角形的直角顶点的坐标是(8068,).故答案为:(16,);(8068,)【点睛】本题考查了坐标与图形变化-旋转,解题的关键是根据题意找出每3个三角形为一个循环组依次循环.15、1.【解析】

由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=2;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.【详解】∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=AC=5,∴AC=2.在直角△ACD中,∠ADC=90°,AD=6,AC=2,则根据勾股定理,得.故答案是:1.16、6【解析】

根据正六边形的外接圆半径和正六边形的边长将组成一个等边三角形,即可求解.【详解】解:正6边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,∴边长为6的正六边形外接圆半径是6,故答案为:6.【点睛】本题考查了正多边形和圆,得出正六边形的外接圆半径和正六边形的边长将组成一个等边三角形是解题的关键.17、3【解析】

根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得最大值.【详解】解:因为点M、N分别是AB、BC的中点,由三角形的中位线可知:MN=AC,所以当AC最大为直径时,MN最大.这时∠B=90°又因为∠ACB=45°,AB=6解得AC=6MN长的最大值是3.故答案为:3.【点睛】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.18、x≠1【解析】

根据分母不等于2列式计算即可得解.【详解】由题意得,x-1≠2,解得x≠1.故答案为x≠1.【点睛】本题考查的知识点为:分式有意义,分母不为2.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)y=﹣0.5x+160,120≤x≤180;(2)当销售单价为180元时,销售利润最大,最大利润是7000元.【解析】试题分析:(1)首先由表格可知:销售单价没涨10元,就少销售5kg,即可得y与x是一次函数关系,则可求得答案;(2)首先设销售利润为w元,根据题意可得二次函数,然后求最值即可.试题解析:(1)∵由表格可知:销售单价没涨10元,就少销售5kg,∴y与x是一次函数关系,∴y与x的函数关系式为:y=100﹣0.5(x﹣120)=﹣0.5x+160,∵销售单价不低于120元/kg.且不高于180元/kg,∴自变量x的取值范围为:120≤x≤180;(2)设销售利润为w元,则w=(x﹣80)(﹣0.5x+160)=-12(x-200)2+7200,∵a=-12<0,∴当x<200时,y随x答:当销售单价为180元时,销售利润最大,最大利润是7000元.20、B60【解析】分析:(1)根据旋转的性质可得出结论;(2)根据旋转的性质可得BF=CF,则点F在线段BC的垂直平分线上,又由AC=AB,可得点A在线段BC的垂直平分线上,由AF垂直平分BC,即∠CQP=90,进而得出∠APC的度数.详解:(1)B,60;(2)补全图形如图所示;的大小保持不变,理由如下:设与交于点∵直线是等边的对称轴∴,∵经顺时针旋转后与重合∴,∴∴点在线段的垂直平分线上∵∴点在线段的垂直平分线上∴垂直平分,即∴点睛:本题考查了旋转的性质,解题的关键是熟记旋转的性质及垂直平分线的性质,注意只证明一点是不能说明这条直线是垂直平分线的.21、(Ⅰ)16;66;(Ⅱ)当x≤15时,y=4x;当x>15时,y=6x﹣30;(Ⅲ)居民甲上月用水量为18吨,居民乙用水12吨【解析】

(Ⅰ)根据题意计算即可;(Ⅱ)根据分段函数解答即可;(Ⅲ)根据题意,可以分段利用方程或方程组解决用水量问题.【详解】解:(Ⅰ)当月用水量为4吨时,应收水费=4×4=16元;当月用水量为16吨时,应收水费=15×4+1×6=66元;故答案为16;66;(Ⅱ)当x≤15时,y=4x;当x>15时,y=15×4+(x﹣15)×6=6x﹣30;(Ⅲ)设居民甲上月用水量为X吨,居民乙用水(X﹣6)吨.由题意:X﹣6<15且X>15时,4(X﹣6)+15×4+(X﹣15)×6=126X=18,∴居民甲上月用水量为18吨,居民乙用水12吨.【点睛】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意在实际问题中,利用方程或方程组是解决问题的常用方法.22、y=2x2+x﹣3,C点坐标为(﹣,0)或(2,7)【解析】

设抛物线的解析式为y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入可求出解析式,进而求出点C的坐标即可.【详解】设抛物线的解析式为y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入得,解得,∴抛物线的解析式为y=2x2+x﹣3,把C(m,2m+3)代入得2m2+m﹣3=2m+3,解得m1=﹣,m2=2,∴C点坐标为(﹣,0)或(2,7).【点睛】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.23、(1)M的坐标为;(2)B(4,3);(3)或.【解析】

利用配方法将已知函数解析式转化为顶点式方程,可以直接得到答案根据抛物线的对称性质解答;利用待定系数法求得抛物线的表达式为根据题意作出图象G,结合图象求得m的取值范围.【详解】解:(1),该抛物线的顶点M的坐标为;由知,该抛物线的顶点M的坐标为;该抛物线的对称轴直线是,点A的坐标为,轴,交抛物线于点B,点A与点B关于直线对称,;抛物线与y轴交于点,..抛物线的表达式为.抛物线G的解析式为:由.由,得:抛物线与x轴的交点C的坐标为,点C关于y轴的对称点的坐标为.把代入,得:.把代入,得:.所求m的取值范围是或.故答案为(1)M的坐标为;(2)B(4,3);(3)或.【点睛】本题考查了二次函数图象与几何变换,待定系数法求二次函数的解析式、二次函数的图象和性质,画出函数G的图象是解题的关键.24、(1)当CC'=时,四边形MCND'是菱形,理由见解析;(2)①AD'=BE',理由见解析;②.【解析】

(1)先判断出四边形MCND'为平行四边形,再由菱形的性质得出CN=CM,即可求出CC';(2)①分两种情况,利用旋转的性质,即可判断出△ACD≌△BCE'即可得出结论;②先判断出点A,C,P三点共线,先求出CP,AP,最后用勾股定理即可得出结论.【详解】(1)当CC'=时,四边形MCND'是菱形.理由:由平移的性质得,CD∥C'D',DE∥D'E',∵△ABC是等边三角形,∴∠B=∠ACB=60°,∴∠ACC'=180°-∠ACB=120°,∵CN是∠ACC'的角平分线,∴∠D'E'C'=∠ACC'=60°=∠B,∴∠D'E'C'=∠NCC',∴D'E'∥CN,∴四边形MCND'是平行四边形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MCE'和△NCC'是等边三角形,∴MC=CE',NC=CC',∵E'C'=2,∵四边形MCND'是菱形,∴CN=CM,∴CC'=E'C'=;(2)①AD'=BE',理由:当α≠180°时,由旋转的性质得,∠ACD'=∠BCE',由(1)知,AC=BC,CD'=CE',∴△ACD'≌△BCE',∴AD'=BE',当α=180°时,AD'=AC+CD',BE'=BC+CE',即:AD'=BE',综上可知:AD'=BE'.②如图连接CP,在△ACP中,由三角形三边关系得,AP<AC+CP,∴当点A,C,P三点共线时,AP最大,如图1,在△D'CE'中,由P为D'E的中点,得AP⊥D'E',PD'=,∴CP=3,∴AP=6+3=9,在Rt△APD'中,由勾股定理得,AD'=.【点睛】此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(1)的关键是四边形MCND'是平行四边形,解(2)的关键是判断出点A,C,P三点共线时,AP最大.25、(1)a=,b=2;(2)BC=.【解析】试题分析:(1)首先利用反比例函数图象上点的坐标性质得出k的值,再得出A、D点坐标,进而求出a,b的值;(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),得出tan∠ADF=,tan∠AEC=,进而求出m的值,即可得出答案.试题解析:(1)∵点B(2,2)在函数y=(x>0)的图象上,∴k=4,则y=,∵BD⊥y轴,∴D点的坐标为:(0,2),OD=2,∵AC⊥x轴,AC=OD,∴AC=3,即A点的纵坐标为:3,∵点A在y=的图象上,∴A点的坐标为:(,3),∵一次函数y=ax+b的图象经过点A、D,∴,解得:,b=2;(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),∵BD∥CE,且BC∥DE,∴四边形BCED为平行四边形,∴CE=BD=2,∵BD∥CE,∴∠ADF=∠AEC,∴在Rt△AFD中,tan∠ADF=,在Rt△ACE中,tan∠AEC=,∴=,解得:m=1,∴C点的坐标为:(1,0),则BC=.考点:反比例函数与一次函数的交点问题.26、(1)①;②;(2)【解析】

(1)①先根据等边三角形的性质的,进而得出,最后用三角形的内角和定理即可得出结论;②先判断出,得出,再判断出是底角为30度的等腰三角形,再构造出直角三角形即可得出结论;(2)同②的方法即可得出结论.【详解】(1)当时,①画出的图形如图1所示,∵为等边三角形,∴.∵为等边三角形的中线∴是的垂直平分线,∵为线段上的点,∴.∵,∴,.∵线段为线段绕点顺时针旋转所得,∴.∴.∴,∴;②;如图2,延长到点,使得,连接,作于点.∵,点在上,∴.∵点在的延长线上,,∴.∴.又∵,,∴.∴.∵于点,∴,.∵在等边三角形中,为中线,点在上,∴,即为底角为的等腰三角形.∴.∴.(2)如图3,当时,在上取一点使,∵为等边三角形,∴.∵为等边三角形的中线,∵为线段上的点,∴是的垂直平分线,∴.∵,∴,.∵线段为线段绕点顺时针旋转所得,∴.∴.∴,又∵,,∴.∴.∵于点,∴,.∵在等边三角形中,为中线,点在上,∴,∴.∴.【点睛】此题是几何变换综合题,主要考查了等边三角形的性质,三角形的内角和定理,全等三角形的判定和性质,等腰三角形的判定和性质,锐角三角函数,作出辅助线构造出全等三角形是解本题的关键.27、(1)①证明见解析;②证明见解析;(2)△EFC是等腰直角三角形.理由见解析;(3).【解析】试题分析:(1)①过点E作EG⊥BC,垂足为G,根据ASA证明△CEG≌△FEM得CE=FE,再根据SAS证明△ABE≌△CBE得AE=CE,在△AEF中根据等腰三角形“三线合一”即可证明结论成立;②设AM=x,则AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x,DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,从而AF=AB,得到点F是AB的中点.;(2)过点E作EM⊥AB,垂足为M,延长M

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论