猜题06 图形的相似(易考必刷36题10种题型专项训练)_第1页
猜题06 图形的相似(易考必刷36题10种题型专项训练)_第2页
猜题06 图形的相似(易考必刷36题10种题型专项训练)_第3页
猜题06 图形的相似(易考必刷36题10种题型专项训练)_第4页
猜题06 图形的相似(易考必刷36题10种题型专项训练)_第5页
已阅读5页,还剩5页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第6章图形的相似(易考必刷36题10种题型专项训练)由比例的性质求值或证明由平行判断成比例线段由平行截线求相关线段的长或比值黄金分割添加条件使两个三角形相似证明两个三角形相似根据已知条件确定相似三角形个数相似三角形的性质求解相似三角形的应用举例坐标系中画位似图形一.由比例的性质求值或证明(共5小题)1.若ca+b=ab+c=ba+c=k,则k的值为A.12 B.12或1 C.-1 D.12.已知非负实数a,b,c满足a-12=b-23=3-c4,设S=a+2b+3c的最大值为m,最小值为3.已知a,b,c,d都是互不相等的正数.(1)若ab=2,cd=2,则badc,acbd(用“>(2)若ab=cd,(3)令ac=bd=t,若分式2a+ca-c4.阅读理解:已知:a,b,c,d都是不为0的数,且ab=c证明:∵ab∴ab∴a+bb=(1)若ab=3(2)若ab=cd,且a≠b,c≠5.已知代数式A=ab+c,B=b①若a:b:c=1:1:2,则A⋅C+B=2②若A=B=C,则A+B+C=3③若a=c=2,b为关于a的方程x2+2023x+4=0的一个解,则④若a<b<c,则A<B<C;其中正确的个数是(

).A.1 B.2 C.3 D.4二.由平行判断成比例线段(共2小题)1.如图,点D为△ABC边AB上任一点,DE∥BC交AC于点E,连接BE、CD相交于点F,则下列等式中A.ADDB=AEEC B.DEBC=2.如图,D是△ABC的边上的一点,过点D作BC的平行线交AC于点E,连接BE,过点D作BE的平行线交AC于点F,则下列结论错误的是(

A.ADBD=AFEF B.AFAE=三.由平行截线求相关线段的长或比值(共5小题)1.如图,已知直线a//b//c,直线m分别交直线a,b,c于点A,B,C;直线n分别交直线a,b,c于点D,E,F.若ABBC=12,则DEA.13 B.12 C.232.如图,在△ABC中,点D为AB边上的一点,DE∥BC,交AC边于点E,EF∥AB,交BC边于点F,若BF:CF=3:2,AB=15,则线段BD的长为3.如图,△ABC中,D在AC上,且AD:DC=1:3,E为BD的中点,AE的延长线交BC于F,那么BFFC的值为4.如图,在△ABC中,点D在边AB上,点E在边AC上,DE∥BC,若AD=2,AB=5,则AEAC=(A.25 B.12 C.355.如图,直线l1∥l2∥l3,直线AC和DF被直线l1、l2、l3所截,AB=2,A.7 B.125 C.152 D四.黄金分割(共3小题)1.点P,点Q是线段AB的黄金分割点,若AB=2,则PQ长度是(

)A.1 B.3-5 C.252.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(BP<AP),如果AB的长度为8cm,那么AP的长度是(

A.45-4cm B.4-25cm C3.如图,在平行四边形ABCD中,点E为边AD的黄金分割点,且AE>ED,则CFAF=4.巴台农神庙的设计代表了古希腊建筑艺术上的最高水平,它的平面图可看作宽与长的比是5-12的矩形,我们将这种宽与长的比是5-12的矩形叫黄金矩形.如图①,已知黄金矩形(1)黄金矩形ABCD的长BC=;(2)如图②,将图①中的黄金矩形裁剪掉一个以AB为边的正方形ABEF,得到新的矩形DCEF,猜想矩形DCEF是否为黄金矩形,并证明你的结论;(3)在图②中,连接AE,求点D到线段AE的距离.五.添加条件使两个三角形相似(共3小题)1.如图,已知∠1=∠2,那么添加一个条件后,仍不能判定△ABC与△ADE相似的是(

)A.∠C=∠AED B.∠B=∠D C.ABAD=BC2.如图,下列条件不能判定△ABC与△ADE相似的是(

A.AEAC=DEBC B.∠B=∠ADE C.3.在Rt△ABC和Rt△A'B'CA.∠A=∠A' B.ACA'C'六.证明两个三角形相似(共4小题)1.如图,D、E、F分别是△ABC的AB、AC、BC边上的点,且DE∥BC,EF∥2.如图,在△ABC中,D为BC上一点,∠BAD=∠C.(1)求证:△ABD∽(2)若AB=6,BD=3,求CD的长.3.如图,F为四边形ABCD边CD上一点,连接AF并延长交BC延长线于点E,已知∠DAE=∠E.

(1)求证:△ADF∽△ECF;(2)若CF=3,AF=2EF,求DC的长度.4.在△ABC和△AED中,AB⋅AD=AC⋅AE,∠BAD=∠CAE,求证:△ABC∽△AED.

七.根据已知条件确定相似三角形个数(共2小题)1.如图,在△ABC中,AD是∠BAC的平分线,CE与AD交于点M,∠ACE=∠B,下列结论中正确的个数是()

①△ACM∽△ABD;②△ACE∽△ABC;③△AEM∽△CDM;④△AEM∽△ACDA.1个 B.2个 C.3个 D.4个2.根据下列条件,能判定△ABC和△DEF相似的个数是()(1)∠ABC=35°,∠ACB=75°,∠EDF=80°,∠DEF=35°;(2)AB=3,BC=2,∠ABC=30°,DE=6,EF=4,∠EDF=30°;(3)AB=2,BC=3,AC=4,DE=12,EF=1(4)AB=6,CB=2,AC=2,DE=3,EF=1A.1个 B.2个 C.3个 D.4个八.相似三角形的性质求解(共4小题)1.如图,△ABC∽△DEF,则∠E的度数是(

A.45° B.60° C.65° D.70°2.两个三角形相似比是3:4,其中小三角形的周长为9,则另一个大三角形的周长是(

)A.12 B.16 C.27 D.363.如图,在ΔABC中,D、E分别是AB和AC的中点,S四边形BCED=15,则SA.30 B.25 C.22.5 D.204.已知两个相似三角形对应角平分线的比为4:3,那么这两个三角形对应高的比是.九.相似三角形的应用举例(共5小题)1.每年秋季,校园里的银杏路是学校最为靓丽的条风景线,吸引着大量的师生驻足观赏;数学兴趣小组成员决定运用数学知识测量出一棵银杏树的高度,于是他们利用镜子和皮尺,设计如图所示的测量方案;把镜子放在离银杏树8米的点E处,然后观测者沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得点D与点E之间的距离为2米,已知观测者CD身高为1.75米,则银杏树AB高约是多少米?2.阅读材料、完成探究.数学活动:测量树的高度.在数学课上我们学过利用三角形的相似测高,在物理课我们学过光的反射定律.数学综合实践小组想利用光的反射定律测量河流对岸一棵树的高度AB,测量的部分步骤和数据如下:①如下图,在地面上的点C处放置了一块平面镜,小华站在BC的延长线上,当小华从平面镜中刚好看到树的顶点A时,测得小华到平面镜的距离CD=2米,小华的眼睛E到地面的距离ED=1.5米;②将平面镜从点C沿BC的延长线移动10米到点F处,小华向后移动到点H处时,小华的眼睛G又刚好在平面镜中看到树的顶点A,这时测得小华到平面镜的距离FH=3米,小华的眼睛G到地面的距离GH=1.5米;③已知AB⊥BH,ED⊥BH,GH⊥BH,点B,C,D,(1)∵∠ABC=∠EDC=90°,∴△ABC∽∴ABED=BC可得ABBC=(2)利用以上信息,继续使用图形相似等有关知识计算树的高度AB.3.文殊院与大慈寺、宽窄巷子一起并称为成都三大历史文化名城保护街区,千佛和平塔就位于成都文殊院中.塔壁上铸999尊浮雕佛像,连同底层中央铜铸释迦牟尼佛像1尊,共1000尊,故得名千佛塔(如图1).爱好文物的小航决定利用所学相似三角形的知识测量千佛和平塔的高度.如图2,在地面BC上取E,G两点,分别竖立两根高为1.5m的标杆EF和GH,两标杆间隔EG为26m,并且古塔AB,标杆EF和GH在同一竖直平面内,从标杆EF后退2m到D处(即ED=2m),从D处观察A点,A,F,D在一直线上;从标杆GH后退4m到C处(即CG=4m),从C处观察A点,A、H、C三点也成一线.已知B、E、D、G、C在同一直线上,AB⊥BC,EF⊥BC,GH⊥BC4.《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图,在井口A处立一根垂直于井口的木杆AB,从木杆的顶端B观察井水水岸D,视线BD与井口的直径AC交于点E,如果测得AB=1米,AC=1.6米,AE=0.4米,求CD的长.

5.张师傅有一块如△ABC的锐角三角形木料,其中BC=120mm,高AD=80mm,张师傅想把它加工成矩形零件PQMN,使一边在BC上,其余两个顶点分别在边AB、AC上,PQ与AD交于点

(1)当点P恰好为AB中点时,PQ=______;(2)当四边形PQMN为正方形时,求出这个零件的边长;(3)若这个零件的边PN:PQ=1:2.则这个零件的长、宽各是多少?十.坐标系中画位似图形(共2小题)1.如图,在平面直角坐标系中,△ABC的顶

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论