2025届黑龙江省齐齐哈尔市建华区数学八年级第一学期期末联考试题含解析_第1页
2025届黑龙江省齐齐哈尔市建华区数学八年级第一学期期末联考试题含解析_第2页
2025届黑龙江省齐齐哈尔市建华区数学八年级第一学期期末联考试题含解析_第3页
2025届黑龙江省齐齐哈尔市建华区数学八年级第一学期期末联考试题含解析_第4页
2025届黑龙江省齐齐哈尔市建华区数学八年级第一学期期末联考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届黑龙江省齐齐哈尔市建华区数学八年级第一学期期末联考试题考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,点表示的实数是()A. B. C. D.2.500米口径球面射电望远镜,简称,是世界上最大的单口径球面射电望远镜,被誉为“中国天眼”.望远镜首次发现的毫秒脉冲星得到国际认证,新发现的脉冲星自转周期为0.00519秒,是至今发现的射电流量最弱的高能毫秒脉冲星之一.将0.00519用科学记数法表示应为()A. B. C. D.3.下列各式:中,是分式的共有()个A.2 B.3 C.4 D.54.如图,已知∠ACD=60°,∠B=20°,那么∠A的度数是()A.40° B.60° C.80° D.120°5.若分式有意义,则实数x的取值范围是()A.x=0 B.x=5 C.x≠5 D.x≠06.已知等腰三角形的两边长分别为3和6,则它的周长等于()A.12 B.12或15 C.15 D.15或187.某化肥厂计划每天生产化肥x吨,由于采用了新技术,每天多生产化肥3吨,因此实际生产150吨化肥与原计划生产化肥120吨化肥的时间相等,则下列所列方程正确的是()A. B.C. D.8.如下书写的四个汉字,其中为轴对称图形的是()A. B. C. D.9.如图,∥,点在直线上,且,,那么=()A.45° B.50° C.55° D.60°10.是()A.分数 B.整数 C.有理数 D.无理数11.如图,在中,,,点在上,,,则的长为()A. B. C. D.12.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.1二、填空题(每题4分,共24分)13.如图,在中,BD平分,于点F,于点E,若,则点D到边AB的距离为_____________.14.小亮的体重为43.85kg,若将体重精确到1kg,则小亮的体重约为_____kg.15.写出一个能说明命题:“若,则”是假命题的反例:__________.16.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=2,[-2.5]=-2.现对82进行如下操作:82[]=9[]=2[]=2,这样对82只需进行2次操作后变为2,类似地,对222只需进行___________次操作后变为2.17.已知矩形的长为,宽为,则该矩形的面积为_________.18.如图,在△ABC中,AB=AC=5,BC=6,AD是∠BAC的平分线,AD=1.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是_____.三、解答题(共78分)19.(8分)如图所示,四边形OABC是长方形,点D在OC边上,以AD为折痕,将△OAD向上翻折,点O恰好落在BC边上的点E处,已知长方形OABC的周长为1.(1)若OA长为x,则B点坐标为_____;(2)若A点坐标为(5,0),求点D和点E的坐标.20.(8分)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用6000元购进电冰箱的数量与用4800元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,现有两种进货方案①冰箱30台,空调70台;②冰箱50台,空调50台,那么该商店要获得最大利润应如何进货?21.(8分)解不等式组,并求出它的整数解的和.22.(10分)计算:(x+3)(x﹣4)﹣x(x+2)﹣523.(10分)2018年“清明节”前夕,宜宾某花店用1000元购进若干菊花,很快售完,接着又用2500元购进第二批花,已知第二批所购花的数量是第一批所购花数的2倍,且每朵花的进价比第一批的进价多元.(1)第一批花每束的进价是多少元.(2)若第一批菊花按3元的售价销售,要使总利润不低于1500元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?24.(10分)四川苍溪小王家今年红心猕猴桃喜获丰收,采摘上市20天全部销售完,小王对销售情况进行跟踪记录,并将记录情况绘制成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图(1)所示,红星猕猴桃的价格z(单位:元/千克)与上市时间x(天)的函数关系式如图(2)所示.(1)观察图象,直接写出日销售量的最大值;(2)求小王家红心猕猴桃的日销量y与上市时间x的函数解析式;并写出自变量的取值范围.(3)试比较第6天和第13天的销售金额哪天多?25.(12分)如图,已知∠AOB和点C,D.求作:点P,使得点P到∠AOB两边的距离相等,且PC=PD.(要求:用直尺与圆规作图,保留作图痕迹)26.为响应珠海环保城市建设,我市某污水处理公司不断改进污水处理设备,新设备每小时处理污水量是原系统的1.5倍,原来处理1200m3污水所用的时间比现在多用10小时.(1)原来每小时处理污水量是多少m2?(2)若用新设备处理污水960m3,需要多长时间?

参考答案一、选择题(每题4分,共48分)1、D【分析】根据勾股定理可求得OA的长为,再根据点A在原点的左侧,从而得出点A所表示的数.【详解】如图,OB=,∵OA=OB,∴OA=,∵点A在原点的左侧,∴点A在数轴上表示的实数是-.故选:D.【点睛】本题考查了实数和数轴,以及勾股定理,注意原点左边的数是负数.2、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00519=5.19×10-1.

故选:B.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3、B【分析】根据分式的定义即可判断.【详解】是分式的有,,,有3个,故选B.【点睛】此题主要考查分式的判断,解题的关键是熟知分式的定义.4、A【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD-∠B=60°-20°=40°,故选A.【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.5、C【解析】根据分式有意义,分母不等于0列不等式求解即可.【详解】解:由题意得,x﹣1≠0,解得x≠1.故选:C.【点睛】本题主要考查分式有意义的条件:分母不为零,掌握分式有意义的条件是解题的关键.6、C【分析】只给出等腰三角形两条边长时,要对哪一条边是腰长进行分类讨论,再将不满足三角形三边关系的情况舍去,即可得出答案.【详解】解:∵等腰三角形的两边长分别是3和6,∴①当腰为6时,三角形的周长为:;②当腰为3时,,三角形不成立;∴此等腰三角形的周长是1.故选:C.【点睛】本题主要考查等腰三角形的概念和三角形的三边关系,当等腰三角形腰长不确定时一定要分类讨论,得到具体的三条边长后要将不满足三边关系的答案舍去.7、C【分析】表示出原计划和实际的生产时间,根据时间相等,可列出方程.【详解】解:设计划每天生产化肥x吨,列方程得=.故选:C.【点睛】本题考查分式方程的应用,关键是掌握工程问题的数量关系:工作量=工作时间×工作效率,表示出工作时间.8、B【分析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:根据轴对称图形的定义可得只有“善”符合条件,故选B.【点睛】本题考查轴对称图形的定义,本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.9、C【解析】根据∥可以推出,根据平角的定义可知:而,∴,∴;∵∴,∴.故应选C.10、D【解析】先化简,进而判断即可.【详解】,故此数为无理数,故选:D.【点睛】本题主要考查无理数的定义和二次根式的化简,正确将二次根式化简得出是解题关键.11、B【分析】根据,可得∠B=∠DAB,即,在Rt△ADC中根据勾股定理可得DC=1,则BC=BD+DC=.【详解】解:∵∠ADC为三角形ABD外角∴∠ADC=∠B+∠DAB∵∴∠B=∠DAB∴在Rt△ADC中,由勾股定理得:∴BC=BD+DC=故选B【点睛】本题考查勾股定理的应用以及等角对等边,关键抓住这个特殊条件.12、D【解析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得.【详解】∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故选D.【点睛】本题考查了关于y轴对称的点,熟练掌握关于y轴对称的两点的横坐标互为相反数,纵坐标不变是解题的关键.二、填空题(每题4分,共24分)13、5【分析】根据角平分线的性质定理,即可求解.【详解】∵在中,BD平分,于点F,于点E,∴DE=DF=5,∴点D到边AB的距离为5.故答案是:5【点睛】本题主要考查角平分线的性质定理,掌握角平分线的性质定理是解题的关键.14、2【分析】利用四舍五入得到近似数,得到答案.【详解】解:1.85≈2(kg)∴小亮的体重约为2kg,故答案为:2.【点睛】本题考查的是近似数和有效数字,掌握近似数的概念、四舍五入的方法是解题的关键.15、(注:答案不唯一)【分析】根据假命题的判断方法,只要找到满足题设条件,而不满足题设结论的a,b值即可.【详解】当时,根据有理数的大小比较法则可知:则此时满足,但不满足因此,“若,则”是假命题故答案为:.(注:答案不唯一)【点睛】本题考查了假命题的证明方法,掌握反例中题设与结论的特点是解题关键.16、2【分析】[x]表示不大于x的最大整数,依据题目中提供的操作进行计算即可.【详解】解:∴对222只需进行2次操作后变为2,故答案为:2.【点睛】本题考查了估算无理数的大小,解决本题的关键是明确[x]表示不大于x的最大整数.17、【分析】直接利用矩形的性质结合二次根式乘法运算法则计算即可.【详解】解:∵矩形的长为,宽为,∴该矩形的面积为:,故答案为:.【点睛】本题考查了二次根式的应用,掌握矩形的性质是解题的关键.18、【分析】由等腰三角形的三线合一可得出AD垂直平分BC,过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ的长,在△ABC中,利用面积法可求出BQ的长度,此题得解.【详解】∵AB=AC,AD是∠BAC的平分线,∴AD垂直平分BC,∴BP=CP.如图,过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ的长,∵S△ABC=BC•AD=AC•BQ,∴BQ==,即PC+PQ的最小值是.故答案为.【点睛】本题考查了轴对称﹣最短路线问题、等腰三角形的性质以及三角形的面积,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.三、解答题(共78分)19、(1)B点坐标为(x,8-x);(2)D的坐标是(0,),E的坐标是(1,3).【分析】(1)根据长方形的特点得到OA+AB=8,故OA=x,AB=8-x,即可写出B点坐标;(2)根据A点坐标为(5,0),得到OA=5,OC=3,由勾股定理得:BE=4,设OD=x,则DE=OD=x,DC=3-x,Rt△CDE中,由勾股定理得到方程求出x即可求解.【详解】(1)长方形OABC周长=1,则OA+AB=8OA=x,AB=8-xB点坐标为(x,8-x)(2)∵矩形OABC的周长为1,∴2OA+2OC=1,∵A点坐标为(5,0),∴OA=5,∴OC=3,∵在Rt△ABE中,∠B=90°,AB=3,AE=OA=5,由勾股定理得:BE=4,∴CE=5-4=1,设OD=x,则DE=OD=x,DC=3-x,在Rt△CDE中,由勾股定理得:x2=12+(3-x)2,解得:x=即OD=∴D的坐标是(0,),E的坐标是(1,3).【点睛】此题主要考查矩形的折叠问题,解题的关键是熟知矩形的性质及勾股定理的应用.20、(1)每台电冰箱与空调的进价分别是2000元,1600元;(2)该商店要获得最大利润应购进冰箱30台,空调70台【分析】(1)根据每台电冰箱的进价比每台空调的进价多400元,商店用6000元购进电冰箱的数量与用4800元购进空调的数量相等,可以列出相应的分式方程,从而可以解答本题;(2)根据题意和(1)中的结果,可以计算出两种方案下获得的利润,然后比较大小,即可解答本题.【详解】解:(1)设每台空调的进件为x元,则每台电冰箱的进件为(x+400)元,,解得,x=1600,经检验,x=1600是原分式方程的解,则x+400=2000元,答:每台电冰箱与空调的进价分别是2000元,1600元;(2)当购进冰箱30台,空调70台,所得利润为:(2100﹣2000)×30+(1750﹣1600)×70=13500(元),当购进冰箱50台,空调50台,所得利润为:(2100﹣2000)×50+(1750﹣1600)×50=12500(元),∵13500>12500,∴该商店要获得最大利润应购进冰箱30台,空调70台.【点睛】本题考查分式方程的应用,解答本题的关键是明确题意,利用分式方程的知识解答,注意分式方程一定要检验.21、1【分析】分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的整数解即可.【详解】解不等式得:,解不等式得:,此不等式组的解集为,故它的整数解为:-2,-1,0,1,2,1,它的整数解的和为1.【点睛】本题主要考查解一元一次不等式组及其整数解,注意各个不等式的解集的公共部分就是这个不等式组的解集.但本题是要求整数解,所以要找出在这范围内的整数.22、﹣3x﹣1.【分析】先根据整式的乘法法则算乘法,再合并同类项即可.【详解】解:原式==.【点睛】本题考查整式的混合运算,解题的关键是熟练掌握混合运算顺序以及相关运算法则.23、(1)2元;(2)第二批花的售价至少为元;【解析】(1)设第一批花每束的进价是x元,则第二批花每束的进价是(x+0.5)元,根据数量=总价÷单价结合第二批所购花的数量是第一批所购花数的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由第二批花的进价比第一批的进价多0.5元可求出第二批花的进价,设第二批菊花的售价为m元,根据利润=每束花的利润×数量结合总利润不低于1500元,即可得出关于m的一元一次不等式,解之即可得出结论.【详解】(1)设第一批花每束的进价是x元,则第二批花每束的进价是元,根据题意得:,解得:,经检验:是原方程的解,且符合题意.答:第一批花每束的进价是2元.(2)由可知第二批菊花的进价为元.设第二批菊花的售价为m元,根据题意得:,解得:.答:第二批花的售价至少为元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.24、(1)日销售量最大为120千克;(2);(3)第6天比第13天销售金额大.【解析】(1)观察图(1),可直接得出第12天时,日销售量最大120千克;(2)观察图(1)可得,日销售量y与上市时间x的函数关系式存在两种形式,根据直线所经过点的坐标,利用待定系数法直接求得函数解析式;(3)观察图(1),根据(2)求出的函数解析式,分别求出第6天和第13天的日销售量,再根据图(2),求出第6天和第13天的销售单价,求出第6天和第13天的销售金额,最后比较即可.【详解】(1)由图(1)可知,x=12时,日销售量最大,为120千克;(2)0≤x<12时,设y=k1x,∵函数图象经过点(12,120),∴12k1=120,解得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论