版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河北省邯郸市丛台区育华中学八年级数学第一学期期末联考模拟试题联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列四组数据中,能作为直角三角形三边长的是()A.1,2,3 B.,3, C.,, D.0.3,0.4,0.52.若关于x的分式方程有增根,则m的值是()A.0或3 B.3 C.0 D.﹣13.若点关于轴对称的点为,则点关于轴对称的点的坐标为()A. B. C. D.4.某数学兴趣小组要统计学生在一天中睡觉学习,活动,吃饭及其他在一天中所占的百分比,应选用()A.条形统计图 B.折线统计图 C.扇形统计图 D.以上都可以5.以下列各组线段为边,能组成三角形的是()A.2cm,4cm,6cm B.8cm,6cm,4cmC.14cm,6cm,7cm D.2cm,3cm,6cm6.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个 B.2个 C.3个 D.4个7.马四匹,牛六头,共价四十八两:马三匹,牛五头,共价三十八两.若设每匹马价a两每头牛价b两,可得方程组是()A. B.C. D.8.下列运算正确的是()A. B. C. D.9.如图所示,四边形是边长为的正方形,,则数轴上点所表示的数是()A. B. C. D.10.如图,在中,,将绕点逆时针旋转,使点恰好落在线段上的点处,点落在点处,则两点间的距离为()A. B. C. D.二、填空题(每小题3分,共24分)11.一组数据1,2,3,x,5的平均数是3,则该组数据的方差是_____.12.若为三角形的三边,且满足,第三边为偶数,则=__________.13.如图,ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=厘米.14.目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=米,用科学记数法将16纳米表示为__________________米.15.等腰三角形的一个角是50°,则它的底角为__________°.16.现有一个长方形纸片,其中.如图所示,折叠纸片,使点落在边上的处,折痕为,当点在上移动时,折痕的端点、也随之移动.若限定、分别在、边上移动,则点在边上可移动的最大距离为_________.17.如图,A(3,4),B(0,1),C为x轴上一动点,当△ABC的周长最小时,则点C的坐标为_________.18.如图,△ABC中,∠A=90°,∠C=75°,AC=6,DE垂直平分BC,则BE=___.三、解答题(共66分)19.(10分)象山红美人柑橘是我省农科院研制的优质品种,宁波市某种植基地2017年种植“象山红美人”100亩,到2019年“象山红美人”的种植面积达到196亩.(1)求该基地这两年“象山红美人”种植面积的平均增长率;(2)市场调查发现,当“象山红美人”的售价为45元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“象山红美人”的平均成本价为33元/千克,若使销售“象山红美人”每天获利3150元,则售价应降低多少元?20.(6分)在边长为的小正方形组成的正方形网格中建立如图所示的平面直角坐标系,已知格点三角形(三角形的三个顶点都在小正方形的顶点上)(1)写出的面积;(2)画出关于轴对称的;(3)写出点及其对称点的坐标.21.(6分)如图,为等边三角形,延长到,延长到,,连结,,求证:.22.(8分)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?23.(8分)某校开展以“倡导绿色出行,关爱师生健康”为主题的教育活动.为了了解本校师生的出行方式,在本校范围内随机抽查了部分师生,已知随机抽查的教师人数为学生人数的一半,将收集的数据绘制成下列不完整的两种统计图.(1)本次共调查了多少名学生?(2)求学生步行所在扇形的圆心角度数.(3)求教师乘私家车出行的人数.24.(8分)如图,已知△ABC中,AB=AC=12厘米,BC=9厘米,AD=BD=6厘米.(1)如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,1秒钟时,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,点P运动到BC的中点时,如果△BPD≌△CPQ,此时点Q的运动速度为多少.(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?25.(10分)某中学八年级学生在学习等腰三角形的相关知识时时,经历了以下学习过程:(1)(探究发现)如图1,在中,若平分,时,可以得出,为中点,请用所学知识证明此结论.(2)(学以致用)如果和等腰有一个公共的顶点,如图2,若顶点与顶点也重合,且,试探究线段和的数量关系,并证明.(3)(拓展应用)如图3,在(2)的前提下,若顶点与顶点不重合,,(2)中的结论还成立吗?证明你的结论26.(10分)如图,直线交轴于点,直线交轴于点,并且这两条直线相交于轴上一点,平分交轴于点.(1)求的面积.(2)判断的形状,并说明理由.(3)点是直线上一点,是直角三角形,求点的坐标.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【详解】解:A、12+22≠32,根据勾股定理的逆定理可知不能作为直角三角形三边长;
B、()2+()2≠32,根据勾股定理的逆定理可知不能作为直角三角形三边长;C、(32)2+(42)2≠(52)2,根据勾股定理的逆定理可知不能作为直角三角形三边长;
D、0.32+0.42=0.52,根据勾股定理的逆定理可知能作为直角三角形三边长.
故选:D.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2、D【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-4=0,得到x=4,然后代入化为整式方程的方程算出m的值.【详解】解:方程两边同乘(x-4)得∵原方程有增根,∴最简公分母x-4=0,解得x=4,把x=4代入,得,解得m=-1故选:D【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.3、C【分析】直接利用关于y轴对称点的性质得出a,b的值,进而利用关于x轴对称点的性质得出答案.【详解】解:∵点P(2a-1,3)关于y轴对称的点为Q(3,b),
∴2a-1=-3,b=3,
解得:a=-1,
故M(-1,3)关于x轴对称的点的坐标为:(-1,-3).
故选:C.【点睛】本题考查关于x轴、y轴对称点的性质,正确得出a,b的值是解题关键.4、C【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【详解】解:根据统计图的特点,知:一学生统计其在一天中睡觉、学习、活动、吃饭及其他在一天中所占的百分比,应选用扇形统计图,故选:C.【点睛】本题考查了统计图的特点,熟知各种统计图的特点是解题的关键.5、B【分析】运用三角形三边关系判定三条线段能否构成三角形时,并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:A.2cm,4cm,6cm可得,2+4=6,故不能组成三角形;
B.8cm,6cm,4cm可得,6+4>8,故能组成三角形;
C.14cm,6cm,7cm可得,6+7<14,故不能组成三角形;
D.2cm,3cm,6cm可得,2+3<6,故不能组成三角形;
故选B.【点睛】本题主要考查了三角形的三边关系的运用,三角形的两边差小于第三边,三角形两边之和大于第三边.6、C【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此可知只有第三个图形不是轴对称图形.【详解】解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意;第三个图形找不到对称轴,则不是轴对称图形,不符合题意.第四个图形有1条对称轴,是轴对称图形,符合题意;轴对称图形共有3个.故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7、B【分析】根据“马四匹、牛六头,共价四十八两;马三匹、牛五头,共价三十八两”列出方程组即可.【详解】解:若设每匹马价a两,每头牛价b两,则可得方程组:,故选:B.【点睛】此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.8、B【分析】根据整式的混合运算法则即可求解.【详解】A.,故错误;B.,正确;C.,故错误;D.,故错误;故选B.【点睛】此题主要考查整式的运算,解题的关键是熟知其运算法则.9、D【分析】连接AC,根据勾股定理求出其长度,,再减1求相反数即为点P表示的数.【详解】解:如图,连接AC,在中,,所以,所以,所以点表示的数为.故选:D.【点睛】本题主要考查在数轴上用勾股定理求无理数长度的线段,熟练掌握该方法是解答关键.10、A【分析】连接BD,利用勾股定理求出AB,然后根据旋转的性质可得AC=AE=4,∠AED=∠C=90°,BC=DE=3,从而求出∠DEB和BE,最后利用勾股定理即可求出结论.【详解】解:连接BD∵∴AB=由旋转的性质可得AC=AE=4,∠AED=∠C=90°,BC=DE=3∴∠DEB=180°-∠AED=90°,BE=AB-AE=1在Rt△DEB中,BD=故选A.【点睛】此题考查的是勾股定理和旋转的性质,掌握勾股定理和旋转的性质是解决此题的关键.二、填空题(每小题3分,共24分)11、1【分析】先用平均数是3可得x的值,再结合方差公式计算即可.【详解】平均数是3(1+1+3+x+5),解得:x=4,∴方差是S1[(1﹣3)1+(1﹣3)1+(3﹣3)1+(4﹣3)1+(5﹣3)1]10=1.故答案为1.【点睛】本题考查了平均数和方差的概念,解题的关键是牢记方差的计算公式,难度不大.12、3【分析】先根据非负数的性质求出a和b的值,再根据三角形三边关系求出c的取值范围,进而求出c的值.【详解】∵a、b满足(b﹣1)1=0,∴a=3,b=1.∵a、b、c为三角形的三边,∴8<c<11.∵第三边c为偶数,∴c=3.故答案为:3.【点睛】本题考查了三角形三边关系以及非负数的性质,解答本题的关键是求出a和b的值,此题难度不大.13、3【解析】试题分析:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.又∵AC+BD=24厘米,∴OA+OB=12厘米.∵△OAB的周长是18厘米,∴AB=6厘米.∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线.∴EF=AB=3厘米.14、【分析】由1纳米=10-9米,可得出16纳米=1.6×10-1米,此题得解.【详解】∵1纳米=10-9米,∴16纳米=1.6×10-1米.故答案为1.6×10-1.【点睛】本题考查了科学计数法中的表示较小的数,掌握科学计数法是解题的关键.15、50或1.【解析】已知一个内角是50°,则这个角可能是底角也可能是顶角,因此要分两种情况进行求解.【详解】当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是1°.故答案是:50或1.【点睛】本题考查了等腰三角形的性质,解题时要全面思考,不要漏解.16、1【解析】根据翻折的性质,可得BA′与AP的关系,根据线段的和差,可得A′C,根据勾股定理,可得A′C,根据线段的和差,可得答案.【详解】①当P与B重合时,BA′=BA=6,CA′=BC−BA′=10−6=1,②当Q与D重合时,由勾股定理,得CA′==8,CA′最远是8,CA′最近是1,点A′在BC边上可移动的最大距离为8−1=1,故答案为1.【点睛】本题考查了翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.17、【分析】先作出点B关于x轴的对称点,连接交x轴于点C,再用待定系数法求出直线的解析式,进而求出点C的坐标即可.【详解】先作出点B关于x轴的对称点,连接交x轴于点C,则点的坐标为由两点之间线段最短可知,的长即为的长,因为AB是定值,所以此时△ABC的周长最小设直线的解析式为将代入解析式得解得∴直线的解析式为当时,,解得∴点故答案为:.【点睛】本题主要考查周长的最小值,能够作出点B的对称点,掌握待定系数法是解题的关键.18、1【分析】根据三角形的内角和求出∠B=15°,再根据垂直平分线的性质求出BE=EC,∠1=∠B=15°,然后解直角三角形计算.【详解】如图:∵△ABC中,∠A=90°,∠C=75°,∴∠B=15°,连接EC,∵DE垂直平分BC,∴BE=EC,∠1=∠B=15°,∴∠2=∠ACB-∠1=75°-15°=60°,在Rt△ACE中,∠2=60°,∠A=90°,∴∠3=180°-∠2-∠A=180°-60°-90°=30°,故EC=2AC=2×6=1,即BE=1.考点:1.线段垂直平分线的性质;2.含30度角的直角三角形.三、解答题(共66分)19、(1)平均增长率为40%;(2)售价应降低5元.【分析】(1)设该基地这两年种植面积的平均增长率为,增长两次后种植面积为,达到196亩即可列出方程求解;(2)设售价应降低元,则每天的销量为千克,每千克的利润为(45-m-33)元,再根据总利润=单个利润×数量即可列出方程求解.【详解】解:(1)设该基地这两年种植面积的平均增长率为,根据题意可得:,两边同时除以100,解得或-2.4(舍去),∴平均增长率为40%,故答案为:40%;(2)设售价应降低元,则每天的销量为千克,根据题意可得:解得或,当时,每天的销量为:200+50×3=350千克,当时,每天的销量为:200+50×5=450千克,∵要减少库存,故每天的销量越多越好,∴售价应降低5元,故答案为:售价应降低5元.【点睛】本题考查了一元二次方程在增长率问题和销售问题中的应用,根据题目正确列出方程是解题的关键.20、(1)7;(2)见解析;(3)A(-1,3),A1(1,3).【分析】(1)过点B作BD∥x轴交AC于点D,由图可知BD=2,AC=7,AC⊥x轴,从而得出BD⊥AC,然后根据三角形的面积公式求面积即可;(2)找到A、B、C关于y轴的对称点,然后连接、、即可;(3)由平面直角坐标系即可得出结论.【详解】解:(1)过点B作BD∥x轴交AC于点D,由图可知BD=2,AC=7,AC⊥x轴∴BD⊥AC∴S△ABC=(2)找到A、B、C关于y轴的对称点,然后连接、、,如下图所示:即为所求.(3)由平面直角坐标系可知:点A(-1,3),点A1(1,3).【点睛】此题考查的是求平角直角坐标系中三角形的面积、画已知三角形关于y轴的对称图形和根据坐标系写点的坐标,掌握三角形的面积公式和关于y轴对称的图形的画法是解决此题的关键.21、详见解析【分析】根据题意首先延长BD至F,使DF=BC,连接EF,得出△BEF为等边三角形,进而求出△ECB≌△EDF,从而得出EC=DE.【详解】解:证明:延长至,使,连接,如图所示,为等边三角形,,为等边三角形,,,,.【点睛】本题主要考查等边三角形的性质与判定以及全等三角形的判定等知识,解决问题的关键是学会添加常用辅助线,构造全等三角形解决问题.22、(1)该种干果的第一次进价是每千克5元.(2)超市销售这种干果共盈利5820元.【详解】试题分析:(1)、设第一次进价x元,第二次进价为1.2x,根据题意列出分式方程进行求解;(2)、根据利润=销售额-进价.试题解析:(1)、设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)、[﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.考点:分式方程的应用.23、(1)60名;(2)72°;(3)15【分析】(1)利用出行方式为骑自行车的学生人数除以其所占学生调查总人数的百分比即可求出结论;(2)利用学生步行的人数除以学生调查总人数再乘360°即可求出结论;(3)求出教师的调查总人数减去步行、乘公交车、骑自行车的教师的人数即可求出结论.【详解】解:(1)15÷25%=60(名)答:本次共调查了60名学生.(2)答:学生步行所在扇形的圆心角为72°(3)答:教师乘私家车出行人数为15人.【点睛】此题考查的是条形统计图和扇形统计图,结合条形统计图和扇形统计图得出有用信息是解决此题的关键.24、(1)①全等,理由见解析;②4cm/s.(2)经过了24秒,点P与点Q第一次在BC边上相遇.【分析】(1)①先求得BP=CQ=3,PC=BD=6,然后根据等边对等角求得∠B=∠C,最后根据SAS即可证明;②因为VP≠VQ,所以BP≠CQ,又∠B=∠C,要使△BPD与△CQP全等,只能BP=CP=4.5,根据全等得出CQ=BD=6,然后根据运动速度求得运动时间,根据时间和CQ的长即可求得Q的运动速度;(2)因为VQ>VP,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,据此列出方程,解这个方程即可求得.【详解】(1)①1秒钟时,△BPD与△CQP是否全等;理由如下:∵t=1秒,∴BP=CQ=3(cm)∵AB=12cm,D为AB中点,∴BD=6cm,又∵PC=BC−BP=9−3=6(cm),∴PC=BD∵AB=AC,∴∠B=∠C,在△BPD与△CQP中,,∴△BPD≌△CQP(SAS),②∵VP≠VQ,∴BP≠CQ,又∵∠B=∠C,要使△BPD≌△CPQ,只能BP=CP=4.5,∵△BPD≌△CPQ,∴CQ=BD=6.∴点P的运动时间t==1.5(秒),此时VQ==4(cm/s).(2)因为VQ>VP,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,设经过x秒后P与Q第一次相遇,依题意得:4x=3x+2×12,解得:x=24(秒)此时P运动了24×3=72(cm)又∵△ABC的周长为33cm,72=33×2+6,∴点P、Q在BC边上相遇,即经过了24秒,点P与点Q第一次在BC边上相遇.点睛:本题考查了三角形全等的判定和性质、等腰三角形的性质以及属性结合思想的运用,解题的根据是熟练掌握三角形的全都能的判定和性质.25、(1)详见详解;(2)DF=2BE,证明详见详解;(3)DF=2BE,证明详见详解【分析】(1)只要证明△ADB≌△ADC(ASA)即可;(2)如图2中,延长BE交CA的延长线于K,只要证明△BAK≌△CAD(ASA)即可;(3)作FK∥CA交BE的延长线于K,交AB于J,利用(2)中的结论证明即可.【详解】解:(1)如图1中,∵AD⊥BC,∴∠ADB=∠ADC=90°,∵DA平分∠BAC,∴∠DAB=∠DAC,∵AD=AD,∴△A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030农用无人机制造行业市场现状分析及投资发展趋势规划报告
- 2025-2030农作物种子企业产品研发生产市场推广市场竞争质量标准政策影响发展规划报告
- 2025-2030农业资源行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030农业种植技术进步供需分析及投资决策规划研究图解
- 2025-2030农业现代化技术应用方向研究及市场前景评估规划报告
- 2025-2030农业消费行业市场深度调研及发展趋势与投资前景预测研究报告
- 2025-2030农业机械行业市场供需结构分析及投资策略规划发展分析研究报告
- 2025-2030农业机械制造行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030农业技术行行业市场竞争现状供需分析投资规划评估评估研究报告
- 2025-2030农业农业产业-animal行业市场供需分析及投资评估规划分析研究报告
- 易错点2.2摩擦力(解析版)高考易错点解读和针对训练
- 2025至2030丝苗米市场行业发展趋势分析与未来投资战略咨询研究报告
- 2026年教师资格之中学教育知识与能力考试题库300道含答案(a卷)
- 2025仁怀市公共交通服务有限公司招聘招聘141人考试笔试备考试题及答案解析
- 2026年电商评价管理策略与产品口碑优化实操手册
- 《短视频制作与运营》教案 项目5 短视频剪辑 (剪映)
- 小学STEM综合活动教学设计方案
- 2023年和田地区直遴选考试真题汇编附答案解析
- 《5G无线网络规划部署》课件-17、5G RF优化流程
- 机械加工质量检测标准
- 屋顶彩钢瓦施工安装合同
评论
0/150
提交评论