版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届辽宁省辽阳市二中学教育协作数学八上期末达标检测试题题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,设点P到原点O的距离为p,将x轴的正半轴绕O点逆时针旋转与OP重合,记旋转角为,规定[p,]表示点P的极坐标,若某点的极坐标为[2,135°],则该点的平面坐标为()
A.() B.() C.() D.()2.如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图2中的,分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系.以下结论正确的是()A.甲的速度为20km/hB.甲和乙同时出发C.甲出发1.4h时与乙相遇D.乙出发3.5h时到达A地3.已知
是方程组
的解,则a、b的值分别为()A.2,7 B.-1,3 C.2,3 D.-1,74.如图,一张长方形纸片的长,宽,点在边上,点在边上,将四边形沿着折叠后,点落在边的中点处,则等于()
A. B. C. D.5.若,则中的数是()A.﹣1 B.﹣2 C.﹣3 D.任意实数6.下列说法正确的是()A.的平方根是 B.的算术平方根是C.的立方根是 D.是的一个平方根7.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺,设木长为尺,绳子长为尺,则下列符合题意的方程组是()A. B. C. D.8.如果分式的值为零,那么应满足的条件是()A., B., C., D.,9.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长 B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长 D.三种方案所用铁丝一样长:]10.下列计算正确的是().A. B. C. D.11.下列命题中,真命题是()A.过一点且只有一条直线与已知直线平行B.两个锐角的和是钝角C.一个锐角的补角比它的余角大90°D.同旁内角相等,两直线平行12.要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=-2x+24(0<x<12) B.y=-x+12(0<x<24)C.y=-2x-24(0<x<12) D.y=-x-12(0<x<24)二、填空题(每题4分,共24分)13.如图,OP=1,过P作PP1⊥OP且PP1=1,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2017=_______.14.方程的根是______.15.命题“两直线平行,同位角相等”的逆命题是.16.已知点M(a,1)与点N(﹣2,b)关于y轴对称,则a﹣b=____.17.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.18.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=度三、解答题(共78分)19.(8分)如图,△ABC中,AB=AC,AB的垂直平分线交AB于点N,交AC于点M.连接MB,若AB=8cm,△MBC的周长是14cm.(1)求BC的长;(2)在直线MN上是否存在点P,使PB+CP的值最小?若存在,直接写出PB+CP的最小值;若不存在,说明理由.20.(8分)2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.21.(8分)解方程组22.(10分)第16届省运会在我市隆重举行,推动了我市各校体育活动如火如荼的开展,在某校射箭队的一次训练中,甲,乙两名运动员前5箭的平均成绩相同,教练将两人的成绩绘制成如下尚不完整的统计图表.乙运动员成绩统计表(单位:环)第1次第2次第3次第4次第5次81086(1)甲运动员前5箭射击成绩的众数是环,中位数是环;(2)求乙运动员第5次的成绩;(3)如果从中选择一个成绩稳定的运动员参加全市中学生比赛,你认为应选谁去?请说明理由.23.(10分)对于二次三项式,可以直接用公式法分解为的形式,但对于二次三项式,就不能直接用公式法了,我们可以在二次三项式中先加上一项,使中的前两项与构成完全平方式,再减去这项,使整个式子的值不变,最后再用平方差公式进步分解.于是.像上面这样把二次三项式分解因式的方法叫做配方法.请用配方法将下列各式分解因式:(1);(2).24.(10分)如图,已知直线AB与CD相交于点O,OE平分∠BOD,OE⊥OF,且∠AOC=40°,求∠COF的度数.25.(12分)如图,在平面直角坐标系中,直线与轴交于点,直线与轴交于点,与相交于点.(1)求点的坐标;(2)在轴上一点,若,求点的坐标;(3)直线上一点,平面内一点,若以、、为顶点的三角形与全等,求点的坐标.26.在杭州西湖风景游船处,如图,在离水面高度为5m的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13m,此人以0.5m/s的速度收绳.10s后船移动到点D的位置,问船向岸边移动了多少m?(假设绳子是直的,结果保留根号)
参考答案一、选择题(每题4分,共48分)1、B【分析】根据题意可得,,过点P作PA⊥x轴于点A,进而可得∠POA=45°,△POA为等腰直角三角形,进而根据等腰直角三角形的性质可求解.【详解】解:由题意可得:,,过点P作PA⊥x轴于点A,如图所示:∴∠PAO=90°,∠POA=45°,∴△POA为等腰直角三角形,∴PA=AO,∴在Rt△PAO中,,即,∴AP=AO=2,∴点,故选B.【点睛】本题主要考查平面直角坐标系点的坐标、勾股定理及旋转的性质,熟练掌握平面直角坐标系点的坐标、勾股定理及旋转的性质是解题的关键.2、C【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h时到达A地.【详解】解:A.甲的速度为:60÷2=30,故A错误;B.根据图象即可得出甲比乙早出发0.5小时,故B错误;C.设对应的函数解析式为,所以:,解得即对应的函数解析式为;设对应的函数解析式为,所以:,解得即对应的函数解析式为,所以:,解得∴点A的实际意义是在甲出发1.4小时时,甲乙两车相遇,故本选项符合题意;D.根据图形即可得出乙出发3h时到达A地,故D错误.故选:C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.3、C【解析】把
代入方程组
,得
,解得
.故选C.4、D【分析】连接BE,根据折叠的性质证明△ABE≌△,得到BE=EG,根据点G是AD的中点,AD=4得到AE=2-EG=2-BE,再根据勾股定理即可求出BE得到EG.【详解】连接BE,由折叠得:,=90°,,∴△ABE≌△,∴BE=EG,∵点G是AD的中点,AD=4,∴AG=2,即AE+EG=2,∴AE=2-EG=2-BE,在Rt△ABE中,,∴,∴EG=,故选:D.【点睛】此题考查折叠的性质,勾股定理,三角形全等的判定及性质,利用折叠证明三角形全等,目的是证得EG=BE,由此利用勾股定理解题.5、B【解析】∵,∴空格中的数应为:.故选B.6、D【分析】依据平方根,算数平方根,立方根的性质解答即可.【详解】解:A.25的平方根有两个,是±5,故A错误;B.负数没有平方根,故B错误;C.0.2是0.008的立方根,故C错误;D.是的一个平方根,故D正确.故选D.【点睛】本题主要考查了平方根,算术平方根,立方根的性质.平方根的性质:①正数有两个平方根,它们互为相反数;②0的平方根为0;③负数没有平方根.算术平方根的性质:①正数的算数平方根是正数;②0的算数平方根为0;③负数没有算数平方根.立方根的性质:①任何数都有立方根,且都只有一个立方根;②正数的立方根是正数,负数的立方根是负数,0的立方根是0.7、B【分析】根据题意可以列出相应的二元一次方程组,从而本题得以解决.【详解】用一根绳子去量一根长木,绳子还剩余4.5尺,则,将绳子对折再量长木,长木还剩余1尺,则,∴,故选B.【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.8、A【分析】根据分子等于零,且分母不等于零列式求解即可.【详解】由题意得a-1=0且1a+b≠0,解得a=1,b≠-1.故选A.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.9、D【解析】试题分析:解:由图形可得出:甲所用铁丝的长度为:2a+2b,乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,故三种方案所用铁丝一样长.故选D.考点:生活中的平移现象10、A【解析】请在此填写本题解析!A.∵,故正确;B.∵,故不正确;C.∵a3与a2不是同类项,不能合并,故不正确;D.∵,故不正确;故选A.11、C【分析】根据平行线的公理及判定、角的定义和补角和余角的定义可逐一判断.【详解】解:A、过直线外一点有且只有一条直线与已知直线平行,是假命题;B、两个锐角的和不一定是钝角,如20°+20°=40°,是假命题;C、一个锐角的补角比它的余角大90°,是真命题;D、同旁内角互补,两直线平行,是假命题;故选:C.【点睛】本题主要考查平行线的公理及性质,掌握平行线的公理及判定、角的定义和补角和余角的定义是关键.12、B【分析】根据题意可得2y+x=24,继而可得出y与x之间的函数关系式,及自变量x的范围.【详解】解:由题意得:2y+x=24,
故可得:y=x+12(0<x<24).
故选:B.【点睛】此题考查了根据实际问题列一次函数关系式的知识,属于基础题,解答本题关键是根据三边总长应恰好为24米,列出等式.二、填空题(每题4分,共24分)13、【详解】解:∵OP=1,OP1=,OP2=,OP3==2,∴OP4==,…,OP2017=.故答案为.【点睛】本题考查了勾股定理,读懂题目信息,理解定理并观察出被开方数比相应的序数大1是解题的关键.14、,【分析】直接开方求解即可.【详解】解:∵∴∴,故答案为:,.【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的几种方法是解题的关键.15、同位角相等,两直线平行【详解】逆命题是原命题的反命题,故本题中“两直线平行,同位角相等”的逆命题是同位角相等,两直线平行【点睛】本题属于对逆命题的基本知识的考查以及逆命题的反命题的考查和运用16、1.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出a、b的值,然后计算即可得解.【详解】∵点M(a,1)与点N(-2,b)关于y轴对称,
∴a=2,b=1,
∴a-b=2-1=1.
故答案为:1.【点睛】此题考查关于x轴、y轴对称的点的坐标,解题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.17、1【分析】根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【详解】解:∵在Rt△AEB中,∠AEB=90°,AE=6,BE=8,∴由勾股定理得:AB==10,∴正方形的面积是10×10=100,∵△AEB的面积是AE×BE=×6×8=24,∴阴影部分的面积是100﹣24=1,故答案是:1.考点:勾股定理;正方形的性质.18、80.【分析】根据平行线的性质求出∠C,根据三角形外角性质求出即可.【详解】∵AB∥CD,∠1=45°,∴∠C=∠1=45°.∵∠2=35°,∴∠3=∠2+∠C=35°+45°=80°.故答案为80.三、解答题(共78分)19、(1)6;(2)1【解析】(1)根据垂直平分线的性质,可得与的关系,再根据三角形的周长,可得答案;(2)根据两点之间线段最短,可得点与点的关系,可得与的关系.【详解】解:(1)∵MN是AB的垂直平分线∴MA=MB∵=即∴;(2)当点与点重合时,PB+CP的值最小,PB+CP能取到的最小值=1.【点睛】本题考查线段的垂直平分线上的点到线段两个端点的距离相等.20、(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;(2)甲种货车有12辆,乙种货车有1辆.【解析】(1)可设甲种货车每辆车可装x件帐蓬,乙种货车每辆车可装y件帐蓬,根据题目中的等量关系“①甲种货车每辆车装的件帐篷数=乙种货车每辆车装的件帐篷数+20;②甲种货车装运1000件帐篷所用车辆=乙种货车装运800件帐蓬所用车辆”,列出方程组求解即可;(2)可设甲种汽车有m辆,乙种汽车有(16﹣m)辆,根据等量关系:甲车装运帐篷数量+乙车装运帐篷数量=这批帐篷总数量1190件,列出方程求解即可.【详解】解:(1)设甲种货车每辆车可装x件帐蓬,乙种货车每辆车可装y件帐蓬,依题意有解得经检验,是原方程组的解.故甲种货车每辆车可装100件帐蓬,乙种货车每辆车可装80件帐蓬;(2)设甲种汽车有m辆,乙种汽车有(16﹣m)辆,依题意有100m+80(16﹣m﹣1)+50=1190,解得m=12,16﹣m=16﹣12=1.故甲种汽车有12辆,乙种汽车有1辆.考点:分式方程的应用;二元一次方程组的应用.21、【分析】利用加减消元法求出解即可;【详解】解:,①+②得:7x=14,
解得:x=2,把x=2代入①得:6+y=5,
解得:y=-1,则方程组的解为【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.22、(1)9,9;(2)乙运动员第5次的成绩是8环;(3)应选乙运动员去参加比赛,理由见解析.【解析】(1)根据众数和中位数的定义分别进行解答即可得出答案;
(2)先算出甲运动员5次的总成绩,再根据甲、乙两名运动员前5箭的平均成绩相同,即可求出乙运动员第5次的成绩;
(3)根据方差公式先求出甲和乙的方差,再根据方差的意义即可得出答案.【详解】(1)∵9环出现了两次,出现的次数最多,则甲运动员前5箭射击成绩的众数是9环;
把这些数从小到大排列为:5,7,9,9,10,最中间的数是9,则中位数是9环;
故答案为9,9;(2),∵甲、乙两名运动员前5箭的平均成绩相同,∴.解得.(或)∴乙运动员第5次的成绩是8环.(3)应选乙运动员去参加比赛.理由:∵(环),(环),∴,.∵,∴应选乙运动员去参加比赛.【点睛】本题考查了平均数、中位数、众数和方差的意义,解题的关键是正确理解各概念的含义.23、(1);(2)【分析】(1)先将进行配方,将其配成完全平方,再利用平方差公式进行因式分解即可;(2)先将进行配方,配成完全平方,在利用平方差公式进行因式分解.【详解】解:(1)(2)【点睛】本题主要考查的是因式分解,正确的理解清楚题目意思,掌握题目给的方法是解题的关键.24、110°【分析】通过对顶角性质得到∠BOD度数,再通过角平分线定义得到∠DOE的度数,通过垂直定义得到∠EOF的度数,再通过角的和差得到∠2的度数,最后通过邻补角性质即可得到∠COF的度数.【详解】解:∵∠BOD与∠AOC是对顶角,且∠AOC=40°,∴∠BOD=∠AOC=40°,∵OE平分∠BOD,∴∠1=∠2=∠BOD=×40°=20°,∵OE⊥OF,∴∠EOF=90°,∴∠2=∠EOF-∠1=90°-20°=70°,∴∠COF=∠COD-∠2=180°-70°=110°.【点睛】本题考查垂直定义、角平分线定义和对顶角性质、邻补角性质,关键是理清图中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电池及电池系统维修保养师岗前保密意识考核试卷含答案
- 长期照护师班组考核知识考核试卷含答案
- 制材工安全技能考核试卷含答案
- 农作物种植技术员安全教育水平考核试卷含答案
- 甘油精制工班组协作模拟考核试卷含答案
- 甲壳类繁育工安全综合竞赛考核试卷含答案
- 烧结成品工岗前日常考核试卷含答案
- 制帽工操作技能竞赛考核试卷含答案
- 糖艺师岗前生产安全考核试卷含答案
- 坯布缝接工安全防护水平考核试卷含答案
- 足踝外科进修汇报
- 【12篇】新部编版小学语文六年级上册【课内外阅读理解专项训练(完整版)】含答案
- 船艇涂装教学课件
- 招标绩效考核方案(3篇)
- 500万的咨询合同范本
- 2025年贷款房屋转赠协议书
- 2025天津市个人房屋租赁合同样本
- 中药热熨敷技术及操作流程图
- 鹤壁供热管理办法
- 01 华为采购管理架构(20P)
- 糖尿病逆转与综合管理案例分享
评论
0/150
提交评论