2025届武汉六中学八年级数学第一学期期末学业水平测试模拟试题含解析_第1页
2025届武汉六中学八年级数学第一学期期末学业水平测试模拟试题含解析_第2页
2025届武汉六中学八年级数学第一学期期末学业水平测试模拟试题含解析_第3页
2025届武汉六中学八年级数学第一学期期末学业水平测试模拟试题含解析_第4页
2025届武汉六中学八年级数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届武汉六中学八年级数学第一学期期末学业水平测试模拟试题试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.若是完全平方式,则m的值等于()A.1或5 B.5 C.7 D.7或2.下列图形中,是中心对称图形的是()A. B. C. D.3.分式方程的解是()A.x=1 B.x=-1 C.x=2 D.x=-24.在下面数据中,无理数是()A. B. C. D.0.585858…5.若分式的值为0,则()A. B. C. D.6.已知二元一次方程组,则a的值是()A.3 B.5 C.7 D.97.已知直线y=kx+b的图象如图所示,则不等式kx+b>0的解集是()A.x>2 B.x>3 C.x<2 D.x<38.蝴蝶标本可以近似地看做轴对称图形.如图,将一只蝴蝶标本放在平面直角坐标系中,如果图中点的坐标为,则其关于轴对称的点的坐标为()A. B. C. D.9.分式和的最简公分母是()A. B. C. D.10.如图,所有阴影四边形都是正方形,所有三角形都是直角三角形,已知正方形A,B,C的面积依次为2,4,3,则正方形D的面积为()A.9 B.8 C.27 D.45二、填空题(每小题3分,共24分)11.如图,在正三角形ABC中,AD⊥BC于点D,则∠BAD=°.12.已知,则的值等于___________.13.已知,那么以边边长的直角三角形的面积为__________.14.64的立方根是_______.15.一次函数的图像沿轴向上平移3个单位长度,则平移后的图像所对应的函数表达为_____.16.一组数据2、3、-1、0、1的方差是_____.17.如果二次三项式是完全平方式,那么常数=___________18.如图,D、E为△ABC两边AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=55°,则∠BDF=_______°.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,直线y=﹣x+3分别交y轴,x轴于A、B两点,点C在线段AB上,连接OC,且OC=BC.(1)求线段AC的长度;(2)如图2,点D的坐标为(﹣,0),过D作DE⊥BO交直线y=﹣x+3于点E.动点N在x轴上从点D向终点O匀速运动,同时动点M在直线=﹣x+3上从某一点向终点G(2,1)匀速运动,当点N运动到线段DO中点时,点M恰好与点A重合,且它们同时到达终点.i)当点M在线段EG上时,设EM=s、DN=t,求s与t之间满足的一次函数关系式;ii)在i)的基础上,连接MN,过点O作OF⊥AB于点F,当MN与△OFC的一边平行时,求所有满足条件的s的值.20.(6分)如图,已知四边形ABCD,AB=DC,AC、BD交于点O,要使,还需添加一个条件.请从条件:(1)OB=OC;(2)AC=DB中选择一个合适的条件,并证明你的结论.解:我选择添加的条件是____,证明如下:21.(6分)(1)计算:;(2)已知:,求的值.22.(8分)在中,,点是上一点,沿直线将折叠得到,交于点.(1)如图①,若,求的度数;(2)如图②,若,,连接,判断的形状,并说明理由.23.(8分)同学们,我们以前学过完全平方公式,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的非负数(以及0)都可以看作是一个数的平方,如,,下面我们观察:,反之,,∴,∴求:(1);(2);(3)若,则m、n与a、b的关系是什么?并说明理由.24.(8分)(1)解方程组(2)解不等式组25.(10分)如图,点A、F、C、D在同一条直线上,已知AC=DF,∠A=∠D,AB=DE,求证:BC∥EF26.(10分)解下列分式方程:(1)=1(2)

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据完全平方公式,首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍.【详解】解:∵多项式是完全平方式,∴,∴解得:m=7或-1故选:D.【点睛】此题主要查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.2、C【分析】根据中心对称的定义,结合所给图形逐一判断即可得答案.【详解】A.不是中心对称图形,故该选项不符合题意,B.不是中心对称图形,故该选项不符合题意,C.是中心对称图形,故该选项符合题意,D.不是中心对称图形,故该选项不符合题意,故选:C.【点睛】本题考查了中心对称图形的特点,判断中心对称图形的关键是寻找对称中心,旋转180°后与原图形能够重合.3、B【解析】根据分式方程的求解方法解题,注意检验根的情况;【详解】解:,两侧同时乘以,可得,解得;经检验是原方程的根;故选:B.【点睛】本题考查分式方程的解法;熟练掌握分式方程的方法是解题的关键.4、A【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A.是无理数,故本选项符合题意;B.,是整数,属于有理数,故本选项不合题意;C.是分数,属于有理数,故本选项不合题意;D.0.585858…是循环小数,属于有理数,故本选项不合题意.故选:A.【点睛】此题考查无理数的定义,解题关键在于掌握无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5、C【分析】根据分式的值为0的条件:分子=0且分母≠0,即可求出x.【详解】解:∵分式的值为0∴解得:故选C.【点睛】此题考查的是分式的值为0的条件,掌握分式的值为0的条件:分子=0且分母≠0是解决此题的关键.6、B【分析】直接利用加减消元法解二元一次方程组即可.【详解】解:,①+②得:4a=20,解得:a=1.故选:B.【点睛】本题考查了加减消元法解二元一次方程组.7、C【分析】根据函数图象可得当y>0时,图象在x轴上方,然后再确定x的范围.【详解】直线y=kx+b中,当y>0时,图象在x轴上方,则不等式kx+b>0的解集为:x<2,故选:C.【点睛】此题主要考查了一次函数与一元一次不等式,关键是掌握数形结合思想,利用图象可直接确定答案.8、B【分析】根据轴对称图形的性质,横坐标互为相反数,纵坐标相等,即可得解.【详解】由题意,得点的坐标为故选:B.【点睛】此题主要考查平面直角坐标系中轴对称图形坐标的求解,熟练掌握,即可解题.9、C【分析】当所有的分母都是单项式时,确定最简公分母的方法:(1)取各分母系数的最小公倍数作为最简公分母的系数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.再结合题意即可求解.【详解】∵和的最简公分母是∴选C故选:C【点睛】通常取各分母系数的最小公倍数与字母因式的最高次幂最为最简公分母,本题属于基础题.10、A【分析】设正方形D的面积为x,根据图形得出方程2+4=x-3,求出即可【详解】∵正方形A.B.

C的面积依次为2、4、3∴根据图形得:2+4=x−3解得:x=9故选A.【点睛】本题考查了勾股定理,根据图形推出四个正方形的关系是解决问题的关键二、填空题(每小题3分,共24分)11、30【分析】根据正三角形ABC得到∠BAC=60°,因为AD⊥BC,根据等腰三角形的三线合一得到∠BAD的度数.【详解】∵△ABC是等边三角形,∴∠BAC=60°,∵AB=AC,AD⊥BC,∴∠BAD=∠BAC=30°,故答案为30°.12、【分析】先进行配方计算出m,n的值,即可求出的值.【详解】,则,故答案为:.【点睛】本题是对完全平方非负性的考查,熟练掌握配方知识和完全平方非负性是解决本题的关键.13、6或【分析】根据得出的值,再分情况求出以边边长的直角三角形的面积.【详解】∵∴(1)均为直角边(2)为直角边,为斜边根据勾股定理得另一直角边∴故答案为:6或【点睛】本题考查了三角形的面积问题,掌握勾股定理以及三角形的面积公式是解题的关键.14、4.【分析】根据立方根的定义即可求解.【详解】∵43=64,∴64的立方根是4故答案为4【点睛】此题主要考查立方根的定义,解题的关键是熟知立方根的定义.15、【分析】根据”上加下减”的平移规律解答即可.【详解】解:一次函数的图像沿轴向上平移3个单位长度,则平移后的图像所对应的函数表达为:.故答案:【点睛】本题考查了一次函数图像与几何变换,求直线平移后的解析式要注意平移时候k值不变,解析式变化的规律是:上加下减,左加右减.16、2【解析】先利用公式求出这组数据的平均数,再根据方差的计算公式即可得出答案【详解】平均数则方差.故答案为:2.【点睛】本题考查方差的定义以及平均数求法,熟记公式是解题关键,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17、【分析】根据完全平方公式的特征即可得出答案.【详解】中间项mx=2ab这里a=x,∴b=±1∴m=±2故答案为:±2.【点睛】本题考查的是完全平方公式:.18、1【分析】由于折叠,可得三角形全等,运用三角形全等得出∠ADE=∠FDE=55°,则∠BDF即可求.【详解】解:∵D、E为△ABC两边AB、AC的中点,即DE是三角形的中位线.∴DE∥BC∴∠ADE=∠B=55°∴∠EDF=∠ADE=55°∴∠BDF=180-55-55=1°.故答案为:1.三、解答题(共66分)19、(1)3;(2)i)y=t﹣2;ii)s=或..【分析】(1)根据以及直角三角形斜边中线定理可得点C是AB的中点,即AC=AB,求出点C的坐标和AB的长度,根据AC=AB即可求出线段AC的长度.(2)i)设s、t的表达式为:①s=kt+b,当t=DN=时,求出点(,2);②当t=OD=时,求出点(,6);将点(,2)和点(,6)代入s=kt+b即可解得函数的表达式.ii)分两种情况进行讨论:①当MN∥OC时,如图1;②当MN∥OF时,如图2,利用特殊三角函数值求解即可.【详解】(1)A、B、C的坐标分别为:(0,3)、(3,0);OC=BC,则点C是AB的中点,则点C的坐标为:(,);故AC=AB=6=3;(2)点A、B、C的坐标分别为:(0,3)、(3,0)、(,);点D、E、G的坐标分别为:(﹣,0)、(﹣,4)、(2,1);i)设s、t的表达式为:s=kt+b,当t=DN=时,s=EM=EA=2,即点(,2);当t=OD=时,s=EG=6,即点(,6);将点(,2)和点(,6)代入s=kt+b并解得:函数的表达式为:y=t﹣2…①;ii)直线AB的倾斜角∠ABO=α=30°,EB=8,BD=4,DE=4,EM=s、DN=t,①当MN∥OC时,如图1,则∠MNB=∠COB=∠CBO=α=30°,MN=BM=BE﹣EM=8﹣s,NH=BN=(BD﹣DN)=(4﹣t),cos∠MNH==…②;联立①②并解得:s=;②当MN∥OF时,如图2,故点M作MG⊥ED角ED于点G,作NH⊥AG于点H,作AR⊥ED于点R,则∠HNM=∠RAE=∠EBD=α=30°,HN=GD=ED﹣EG=4﹣EMcos30°=4﹣s,MH=MG﹣GH=MEcos30°﹣t=s﹣t,tanα==…③;联立①③并解得:s=;从图象看MN不可能平行于BC;综上,s=或.【点睛】本题考查了直线解析式的动点问题,掌握直角三角形斜边中线定理、两点之间的距离公式、直线解析式的解法、平行线的性质、特殊三角函数值是解题的关键.20、条件是(2)AC=DB,证明见解析【分析】根据三角形全等的条件进行选择判断,先证明,可以得到,从而可以证明出.【详解】解:选择的条件是(2),证明如下:在中,∵,∴∴在中,∵,∴【点睛】本题考查了全等三角形的判定,在全等三角形的5种判定方法中,选用合适的方法进行判定是解题的关键.21、(1)-3;(2)或.【分析】(1)原式利用算术平方根的定义,立方根和负整数指数评价的人运算法则进行计算,最后再进行加减运算即可;(2)方程利用平方根的定义开方即可求得方程的解.【详解】(1),=2-1-4=-3;(2)开方得,∴,解得,或.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22、(1)52°;(2)△ABE是等边三角形,理由见解析.【分析】(1)根据翻折变换的性质得到∠ADB=∠ADE,根据邻补角的概念求出∠ADC即可解答;(2)设∠EDC=∠DAB=x,用x表示出∠ADB和∠ADE,根据翻折变换的性质列出方程,解方程求出x,再根据三角形外角的性质求出∠DBE,得到∠ABE=60°即可证得结论.【详解】解:(1)∵∠ADB=116°,∴∠ADE=116°,∠ADC=180°−116°=64°,∴∠EDC=∠ADE−∠ADC=52°;(2)△ABE是等边三角形,理由:∵∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,设∠EDC=∠DAB=x,则∠ADB=180°−45°−x,∠ADE=45°+x+x,∴180°−45°−x=45°+x+x,解得:x=30°,∵∠EDC=30°,DB=DE,∴∠DBE=∠DEB=15°,∴∠ABE=60°,又∵AB=AE,∴△ABE是等边三角形.【点睛】本题考查的是翻折变换的性质、等边三角形的判定、等腰直角三角形的性质以及三角形的内角和定理等知识;熟练掌握翻折变换和等腰直角三角形的性质是解题的关键.23、(1);(2);(3),,理由见解析【分析】(1)将3拆分为2+1,再根据完全平方公式和二次根式化简即可求解;

(2)将4拆分为3+1,再根据完全平方公式和二次根式化简即可求解;

(3)利用二次根式的性质结合完全平方公式直接化简得出即可.【详解】解:(1)==;(2);(3)m+n=a,mn=b.理由:∵,∴,∴m+n+2=a+2,∴m+n=a,mn=b【点睛】此题主要考查了二次根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论