版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届重庆市江津实验中学八年级数学第一学期期末学业水平测试模拟试题测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.长度分别为a,2,4的三条线段能组成一个三角形,则a的值可能是()A.1 B.2 C.3 D.62.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数均是8.9环,方差分别是则成绩最稳定的是().A.甲 B.乙 C.丙 D.丁3.如图,是由7块颜色不同的正方形组成的长方形,已知中间小正方形的边长为1,这个长方形的面积为()A.45 B.48 C.63 D.644.如图,函数y=ax+b和y=kx的图像交于点P,关于x,y的方程组的解是()A. B. C. D.5.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A., B.,C., D.,6.如图,在平面直角坐标系中,以为圆心,适当长为半径画弧,交轴于点,交轴于点,再分别一点为圆心,大于的长为半径画弧,两弧在第二象限交于点.若点的坐标为,则的值为()A. B. C. D.7.若是完全平方式,则的值为()A. B. C. D.8.下列各数中,无理数是()A. B. C. D.9.如图,△ABC中,AB=AC,∠C=72°,AB的垂直平分线DE交AC于D,交AB于E,则∠BDC的度数为()A.82° B.72° C.60° D.36°10.若代数式有意义,则实数x的取值范围是A. B. C. D.且二、填空题(每小题3分,共24分)11.分解因式:ax2+2ax+a=____________.12.在平面直角坐标系xOy中,直线l:y=2x﹣2与x轴交于点A1,如图所示,依次作正方形A1B1C1O,正方形A2B2C2C1,…,正方形AnBn∁nCn﹣1,使得点A1,A2,A3,…An在直线l上,点C1,C2,C3,…∁n在y轴正半轴上,则正方形AnBn∁nCn﹣1的面积是_____.13.当m=____时,关于x的分式方程无解.14.如果直角三角形的一个内角为40°,则这个直角三角形的另一个锐角为_____.15.如图,,,垂足分别为,,,,点为边上一动点,当_______时,形成的与全等.16.已知点P(﹣10,1)关于y轴对称点Q(a+b,b﹣1),则的值为_____.17.如下图,在中,,的垂直平分线交于点,垂足为.当,时,的周长是__________.18.点(2,1)到x轴的距离是____________.三、解答题(共66分)19.(10分)对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到,请解答下列问题:(1)写出图2中所表示的数学等式____________________________________(2)根据整式乘法的运算法则,通过计算验证上述等式.(3)利用(1)中得到的结论,解决下面的问题:若,,则_________.20.(6分)如图,△ABC是等边三角形,△ACE是等腰三角形,∠AEC=120°,AE=CE,F为BC中点,连接AE.(1)直接写出∠BAE的度数为;(2)判断AF与CE的位置关系,并说明理由.21.(6分)如图1,△ABC是等边三角形,点D是AC边上动点,∠CBD=α,把△ABD沿BD对折,A对应点为A'.(1)①当α=15°时,∠CBA'=;②用α表示∠CBA'为.(2)如图2,点P在BD延长线上,且∠1=∠2=α.①当0°<α<60°时,试探究AP,BP,CP之间是否存在一定数量关系,猜想并说明理由.②BP=8,CP=n,则CA'=.(用含n的式子表示)22.(8分)如图,由5个全等的正方形组成的图案,请按下列要求画图:(1)在图案(1)中添加1个正方形,使它成轴对称图形但不是中心对称图形.(2)在图案(2)中添加1个正方形,使它成中心对称图形但不是轴对称图形.(3)在图案(3)中添加1个正方形,使它既成轴对称图形,又成中心对称图形.23.(8分)知识链接:将两个含角的全等三角尺放在一起,让两个角合在一起成,经过拼凑、观察、思考,探究出结论“直角三角形中,角所对的直角边等于斜边的一半”.如图,等边三角形的边长为,点从点出发沿向运动,点从出发沿的延长线向右运动,已知点都以每秒的速度同时开始运动,运动过程中与相交于点,设运动时间为秒.请直接写出长.(用的代数式表示)当为直角三角形时,运动时间为几秒?.求证:在运动过程中,点始终为线段的中点.24.(8分)如图,,点、分别在边、上,且,请问吗?为什么?25.(10分)(1)如图①,在△ABC中,∠C=90°,请用尺规作图作一条直线,把△ABC分割成两个等腰三角形,并说明理由(保留作图痕迹,不写作法);(2)已知内角度数的两个三角形如图②、图③所示,能否分别画一条直线把他们分割成两个等腰三角形?若能,请写出分割成的两个等腰三角形顶角的度数.26.(10分)齐齐哈尔市教育局想知道某校学生对扎龙自然保护区的了解程度,在该校随机抽取了部分学生进行问卷,问卷有以下四个选项:A.十分了解;B.了解较多:C.了解较少:D.不了解(要求:每名被调查的学生必选且只能选择一项).现将调查的结果绘制成两幅不完整的统计图.请根据两幅统计图中的信息回答下列问题:(1)本次被抽取的学生共有_______名;(2)请补全条形图;(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角的大小为_______°;(4)若该校共有名学生,请你根据上述调查结果估计该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共有多少名?
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据三角形三边关系定理得出4-2<a<4+2,求出即可.【详解】由三角形三边关系定理得:4﹣2<a<4+2,即2<a<6,即符合的只有1.故选:C.【点睛】此题考查三角形三边关系定理,能根据定理得出5-1<a<5+1是解题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.2、D【分析】根据方差是用来衡量一组数据波动大小的量,故由甲、乙、丙、丁的方差可作出判断.【详解】解:由于S丁2<S丙2<S甲2<S乙2,则成绩较稳定的是丁.
故选:D【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.3、C【分析】由中央小正方形的边长为1厘米,设这7个正方形中最大的一个边长为x厘米,其余几个边长分别是x-1、x-2、x-3,根据长方形中几个正方形的排列情况,列方程求出最大正方形的边长,从而求得长方形长和宽,进而求出长方形的面积.【详解】因为小正方形边长为1厘米,设这7个正方形中最大的一个边长为x厘米,因为图中最小正方形边长是1厘米,所以其余的正方形边长分别为x−1,x−2,x−3,3(x-3)-1=x解得:x=5;所以长方形的长为x+x−1=5+5-1=9,宽为x-1+x−2=5-1+5-2=7长方形的面积为9×7=63(平方厘米);故选:C【点睛】本题考查了对拼组图形面积的计算能力,利用了正方向的性质和长方形面积的计算公式.4、D【分析】根据两图象的交点坐标满足方程组,方程组的解就是交点坐标.【详解】由图可知,交点坐标为(﹣3,﹣2),所以方程组的解是.故选D.【点睛】本题考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.5、B【分析】根据平行四边形的判定方法,对每个选项进行筛选可得答案.【详解】A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,故A选项不符合题意;B、AB=CD,AO=CO不能证明四边形ABCD是平行四边形,故本选项符合题意;C、∵AD//BC,AD=BC,∴四边形ABCD是平行四边形,故C选项不符合题意;D、∵AB∥CD,∴∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又∵∠BAD=∠BCD,∴∠ABC=∠ADC,∵∠BAD=∠BCD,∠ABC=∠ADC,∴四边形ABCD是平行四边形,故D选项不符合题意,故选B.【点睛】本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.6、D【分析】根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得,再根据P点所在象限可得横纵坐标的和为0,进而得到a的数量关系.【详解】根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,故=0,解得:a=.故答案选:D.【点睛】本题考查的知识点是作图—基本作图,坐标与图形性质,角平分线的性质,解题的关键是熟练的掌握作图—基本作图,坐标与图形性质,角平分线的性质作图—基本作图,坐标与图形性质,角平分线的性质.7、D【解析】根据完全平方公式进行计算即可.【详解】解:,∴m=∴m=故选:D【点睛】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号.8、C【分析】A、B、C、D分别根据无理数、有理数的定义来求解即可判定.【详解】A、B、D中0.101001,0,是有理数,C中开方开不尽是无理数.故选:C.【点睛】此题主要考查了无理数的定义.注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如,,0.8080080008…(每两个8之间依次多1个0)等形式.9、B【分析】先根据AB=AC,∠C的度数,求出∠ABC的度数,再由垂直平分线的性质求出∠ABD的度数,再由三角形内角与外角的性质解答即可.【详解】解:∵AB=AC,∠C=72°,
∴∠ABC=∠C=72°,∴∠A=36°
∵DE垂直平分AB,
∴∠A=∠ABD=36°,
∴∠BDC=∠A+∠ABD=36°+36°=72°.
故选:B.【点睛】点评:本题考查的是线段垂直平分线的性质及三角形内角和定理、等腰三角形的性质,解答此题的关键是熟知线段垂直平分线的性质,即线段的垂直平分线上的点到线段的两个端点的距离相等.10、D【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且x≠1.故选D.二、填空题(每小题3分,共24分)11、a(x+1)1【解析】ax1+1ax+a=a(x1+1x+1)=a(x+1)1.12、【分析】由直线点的特点得到,分别可求OA1=OC1=1,C1A2=,C2A3=,……,从而得到正方形边长的规律为Cn﹣1An=,即可求正方形面积.【详解】解:直线l:y=2x﹣2与x轴交于点A₁(1,0),与y轴交于点D(0,﹣2),∴,∵OA1=OC1=1,∴A1B1C1O的面积是1;∴DC1=3,∴C1A2=,∴A2B2C2C1的面积是;∴DC2=,∴C2A3=,∴A3B3C3C2的面积是;……∴Cn﹣1An=,∴正方形AnBn∁nCn﹣1的面积是,故答案为.【点睛】本题考查的是平面直角坐标系中有规律的点的坐标与图形的探索问题,列出前面几步的数据找到点或图形的变化规律是解答关键.13、-6【解析】把原方程去分母得,2x+m=-(x-3)①,把x=3代入方程①得,m=-6,故答案为-6.14、50°【分析】根据直角三角形两锐角互余进行求解即可.【详解】∵直角三角形的一个内角为40°,∴这个直角三角形的另一个锐角=90°﹣40°=50°,故答案为50°.【点睛】本题考查了直角三角形两锐角互余的性质,熟练掌握是解题的关键.15、1【分析】当BP=1时,Rt△ABP≌Rt△PCD,由BC=6可得CP=4,进而可得AB=CP,BP=CD,再结合AB⊥BC、DC⊥BC可得∠B=∠C=90°,可利用SAS判定△ABP≌△PCD.【详解】解:当BP=1时,Rt△ABP≌Rt△PCD,∵BC=6,BP=1,∴PC=4,∴AB=CP,∵AB⊥BC、DC⊥BC,∴∠B=∠C=90°,在△ABP和△PCD中,∴△ABP≌△PCD(SAS),故答案为:1.【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)是解题的关键.16、3【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得,a+b=10,b-1=1,计算出a、b的值,然后代入可得的值.【详解】解:∵点P(﹣10,1)关于y轴对称点Q(a+b,b﹣1),∴a+b=10,b﹣1=1,解得:a=8,b=2,则=+=2+=3,故答案为:3.【点睛】此题主要考查关于y轴对称点的坐标特点以及二次根式的加法运算,关键是掌握关于y轴对称点的坐标特点,即关于y轴对称的两点:横坐标互为相反数,纵坐标不变.17、1【分析】根据线段垂直平分线的性质知CD=BD,则△ACD的周长等于AC+AB.【详解】解:∵DE是线段BC的垂直平分线,∠ACB=90°,
∴CD=BD,AD=BD.
又∵在△ABC中,∠ACB=90°,∠B=30°,
∴AC=AB,
∴△ACD的周长=AC+AB=AB=1,
故答案为:1.【点睛】本题考查了含30度角直角三角形的性质和垂直平分线的性质,直角三角形中30°的锐角所对的直角边等于斜边的一半,培养学生运用定理进行推理论证的能力.18、1【分析】根据点到x轴的距离等于纵坐标的绝对值解答.【详解】解:点(2,1)到x轴的距离是1,故答案为:1.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.三、解答题(共66分)19、(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)见解析;(3)1【分析】(1)图2的面积一方面可以看作是边长为(a+b+c)的正方形的面积,另一方面还可以看成是3个边长分别为a、b、c的正方形的面积+2个边长分别为a、b的长方形的面积+2个边长分别为a、c的长方形的面积+2个边长分别为b、c的长方形的面积,据此解答即可;(2)根据多项式乘以多项式的法则计算验证即可;(3)将所求的式子化为:,然后整体代入计算即得结果.【详解】解:(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)(a+b+c)2=(a+b+c)(a+b+c)=a2+ab+ac+ba+b2+bc+ca+cb+c2=a2+b2+c2+2ab+2ac+2bc;所以(1)中的等式成立;(3).故答案为:1.【点睛】本题是完全平方公式的拓展应用,主要考查了对三数和的完全平方的理解与应用,正确理解题意、熟练掌握完全平方公式是解题的关键.20、(1)90°;(2)AF∥EC,见解析【分析】(1)分别利用等边三角形的性质和等腰三角形的性质求出∠BAC,∠CAE的度数,然后利用∠BAE=∠BAC+∠CAE即可解决问题;(2)根据等边三角形的性质有AF⊥BC,然后利用等边三角形的性质和等腰三角形的性质得出,∠BCE=90°则有EC⊥BC,再根据垂直于同一条直线的两直线平行即可得出结论.【详解】解:(1)∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,∵EA=EC,∠AEC=120°,∴EAC=∠ECA=30°,∴∠BAE=∠BAC+∠CAE=90°.故答案为90°.(2)结论:AF∥EC.理由:∵AB=AC,BF=CF,∴AF⊥BC,∵∠ACB=60°,∠ACE=30°,∴∠BCE=90°,∴EC⊥BC,∴AF∥EC.【点睛】本题主要考查等边三角形和等腰三角形的性质,平行线的判定,三角形内角和定理,掌握等边三角形和等腰三角形的性质,平行线的判定,三角形内角和定理是解题的关键.21、(1)①30°;②60°﹣2α;(2)①BP=AP+CP,理由见解析;②8﹣2n【分析】(1)先求出∠ABC=60°,得出∠ABD=60°﹣α,再由折叠得出∠A'BD=60°﹣α,即可得出结论;(2)①先判断出△BP'C≌△APC,得出CP'=CP,∠BCP'=∠ACP,再判断出△CPP'是等边三角形,得出PP'=CP;②先求出∠BCP=120°﹣α,再求出∠BCA'=60°+α,判断出点A',C,P在同一条直线上,即:PA'=PC+CA',再判断出△ADP≌△A'DP(SAS),得出A'P=AP,即可得出结论.【详解】解:(1)∵△ABC是等边三角形,∴∠ABC=60°,∵∠CBD=α,∴∠ABD=∠ABC﹣∠CBD=60°﹣α,由折叠知,∠A'BD=∠ABD=60°﹣α,∴∠CBA'=∠A'BD﹣∠CBD=60°﹣α﹣α=60°﹣2α,①当α=15°时,∠CBA'=60°﹣2α=30°,故答案为30°;②用α表示∠CBA'为60°﹣2α,故答案为60°﹣2α;(2)①BP=AP+CP,理由:如图2,连接CP,在BP上取一点P',使BP'=AP,∵△ABC是等边三角形,∴∠ACB=60°,BC=AC,∵∠1=∠2=α,∴△BP'C≌△APC(SAS),∴CP'=CP,∠BCP'=∠ACP,∴∠PCP'=∠ACP+∠ACP'=∠BCP'+∠ACP'=∠ACB=60°,∵CP'=CP,∴△CPP'是等边三角形,∴∠CPB=60°,PP'=CP,∴BP=BP'+PP'=AP+CP;②如图3,由①知,∠BPC=60°,∴∠BCP=180°﹣∠BPC﹣∠PBC=180°﹣60°﹣α=120°﹣α,由(1)知,∠CBA'=60°﹣2α,由折叠知,BA=BA',∵BA=BC,∴BA'=BC,∴∠BCA'=(180°﹣∠CBA')=[180°﹣(60°﹣2α)]=60°+α,∴∠BCP+∠BCA'=120°﹣α+60°+α=180°,∴点A',C,P在同一条直线上,即:PA'=PC+CA',由折叠知,BA=BA',∠ADB=∠A'DB,∴180°﹣∠ADB=180°﹣∠A'DB,∴∠ADP=∠A'DP,∵DP=DP,∴△ADP≌△A'DP(SAS),∴A'P=AP,由①知,BP=AP+CP,∵BP=8,CP=n,∴AP=BP﹣CP=8﹣n,∴A'P=8﹣n,∴CA'=A'P﹣CP=8﹣n﹣n=8﹣2n,故答案为:8﹣2n.【点睛】此题是几何变换综合题,主要考查了折叠的性质,全等三角形的判定和性质,等边三角形的判定和性质,构造出全等三角形是解本题的关键.22、(1)作图见解析;(2)作图见解析;(3)作图见解析【分析】(1)根据轴对称、中心对称的性质作图,即可完成求解;(2)根据轴对称、中心对称的性质作图,即可完成求解;(3)根据轴对称、中心对称的性质作图,即可完成求解.【详解】(1)如图所示(2)如图所示(3)如图所示.【点睛】本题考查了轴对称、中心对称的知识;解题的关键是熟练掌握轴对称、中心对称的性质,从而完成求解.23、(1)AD=4-0.5x;(2)秒;(3)见解析【分析】(1)根据题意得到CD=0.5x,结合图形求出AD;
(2)设x秒时,△ADE为直角三角形,则BE=0.5x,AD=4-0.5x,AE=4+0.5x,根据30°的直角边等于斜边的一般建立方程求出其解即可;
(3)作DG∥AB交BC于点G,证明△DGP≌△EBP,得出PD=PE即可.【详解】解:(1)由题意得,CD=0.5x,
则AD=4-0.5x;
(2)∵△ABC是等边三角形,
∴AB=BC=AC=4cm,∠A=∠ABC=∠C=60°.
设x秒时,△ADE为直角三角形,
∴∠ADE=90°,BE=0.5x,AD=4-0.5x,AE=4+0.5x,
∴∠AED=30°,
∴AE=2AD,
∴4+0.5x=2(4-0.5x),
∴x=;
答:运动秒后,△ADE为直角三角形;
(3)如图2,作DG∥AB交BC于点G,
∴∠GDP=∠BEP,∠DGP=∠EBP,∠CDG=∠A=60°,∠CGD=∠ABC=60°,
∴∠C=∠CDG=∠CGD,
∴△CDG是等边三角形,
∴DG=DC,
∵DC=BE,
∴DG=BE.
在△DGP和△EBP中,,
∴△DGP≌△EBP(ASA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 拥军工作协议书
- 浙江国企招聘2025绍兴市国资委绍兴市退役军人事务局联合组织开展“戎耀新程智汇国资”绍兴市国有企业招聘87人笔试历年典型考点题库附带答案详解
- 重庆市2024重庆中医药学考核招聘8人笔试历年参考题库典型考点附带答案详解(3卷合一)试卷2套
- 襄阳市2024年湖北襄阳市市直事业单位招聘168人笔试历年参考题库典型考点附带答案详解(3卷合一)试卷2套
- 百色市2024广西百色市右江区工业和信息化局招聘1人笔试历年参考题库典型考点附带答案详解(3卷合一)试卷2套
- 河源市2024广东河源市市场监督管理局招聘编外人员1人笔试历年参考题库典型考点附带答案详解(3卷合一)试卷2套
- 曲靖市2024年云南曲靖市事业单位定向招聘工作人员37人(含定向招聘)笔试历年参考题库典型考点附带答案详解(3卷合一)试卷2套
- 常州市2024年江苏常州市卫生健康委员会直属事业单位招聘非医卫工作人员26人笔试历年参考题库典型考点附带答案详解(3卷合一)试卷2套
- 安陆市2024年湖北孝感安陆市企事业单位人才引进157人笔试历年参考题库典型考点附带答案详解(3卷合一)试卷2套
- 国家事业单位招聘2024国家海洋技术中心招聘应届博士毕业生笔试历年参考题库典型考点附带答案详解(3卷合一)试卷2套
- 融合叙事策略-洞察及研究
- 焦作市2025年环境公报
- CJ/T 313-2009生活垃圾采样和分析方法
- T/CMMA 8-2020镁质胶凝材料制品硫氧镁平板
- 网红饮品品牌总部直营店授权与原物料供应合同
- 解读语文课程标准2025版
- 福建省漳州2024-2025高二语文上学期期末教学质量检测试题
- 装卸服务协议书样式
- 江苏《精神障碍社区康复服务规范》
- 职工食堂承包经营投标书-1
- 生命体征监测考核评分标准
评论
0/150
提交评论