2024-2025学年湖北省武汉硚口区六校联考数学九上开学综合测试试题【含答案】_第1页
2024-2025学年湖北省武汉硚口区六校联考数学九上开学综合测试试题【含答案】_第2页
2024-2025学年湖北省武汉硚口区六校联考数学九上开学综合测试试题【含答案】_第3页
2024-2025学年湖北省武汉硚口区六校联考数学九上开学综合测试试题【含答案】_第4页
2024-2025学年湖北省武汉硚口区六校联考数学九上开学综合测试试题【含答案】_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页2024-2025学年湖北省武汉硚口区六校联考数学九上开学综合测试试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,正方形的两边,分别在平面直角坐标系的轴、轴的正半轴上正方形与正方形是以的中点为中心的位似图形,已知,,则正方形与正方形的相似比是()A. B. C. D.2、(4分)下列式子运算正确的是()A. B.C. D.3、(4分)计算3×6的结果是(A.6 B.3 C.32 D.4、(4分)将一组数据中的每一个数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数是()A.40 B.42 C.38 D.25、(4分)在矩形ABCD中,AB=3,BC=4,E是BC上一点,且与B、C不重合,若AE是整数,则AE等于()A.3 B.4 C.5 D.66、(4分)菱形ABCD的对角线AC=6cm,BD=4cm,以AC为边作正方形ACEF,则BF长为()A.4cm B.5cm C.5cm或8cm D.5cm或cm7、(4分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.8、(4分)如图所示,正方形纸片ABCD中,对角线AC,BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB,AC于点E,G,连接GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+4,其中正确的结论个数有()A.2个 B.4个 C.3个 D.5个二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)不等式的非负整数解为_____.10、(4分)如图,在平行四边形ABCD中,AB=4,∠ABC=60°,点E为BC上的一点,点F,G分别为DE,AD的中点,则GF长的最小值为________________.11、(4分)无论x取何值,分式总有意义,则m的取值范围是______.12、(4分)如图,函数和的图象交于点,则不等式的解集是_____.13、(4分)已知平行四边形ABCD中,∠B+∠D=270°,则∠C=________.三、解答题(本大题共5个小题,共48分)14、(12分)在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:56406430652067987325843082157453744667547638683473266830864887539450986572907850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表组别步数分组频数A5500≤x<65002B6500≤x<750010C7500≤x<8500mD8500≤x<95003E9500≤x<10500n请根据以上信息解答下列问题:(1)填空:m=______,n=______;(2)补全频数发布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在______组;(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.15、(8分)已知命题“若a>b,则a2>b2”.(1)此命题是真命题还是假命题?若是真命题,请给予证明;若是假命题,请举出一个反例.(2)写出此命题的逆命题,并判断此逆命题的真假;若是真命题,请给予证明;若是假命题,请举出一个反例.16、(8分)某农机租赁公司共有50台收割机,其中甲型20台、乙型30台,现将这50台联合收割机派往A,B两地区收割小麦,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如下表:(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机天获得的租金为y元,求y关于x的函数关系式,并写出自变量的取值范围:(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,为农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.17、(10分)如图,E、F是▱ABCD对角线AC上的两点,且求证:≌;18、(10分)如图,在△ABC中,AB=AC,BC=10,D为AB上一点,CD=8,BD=1.(1)求证:∠CDB=90°;(2)求AC的长.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)点P(m-1,2m+3)关于y轴对称的点在第一象限,则m的取值范围是_______.20、(4分)矩形的一边长是3.6㎝,两条对角线的夹角为60º,则矩形对角线长是___________.21、(4分)如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PE⊥AC于F,则EF的最小值_____.22、(4分)比较大小:_____.23、(4分)如图,直线y=-2x+2与x轴、y轴分别相交于A、B两点,四边形ABCD是正方形,曲线在第一象限经过点D,则k=_______.二、解答题(本大题共3个小题,共30分)24、(8分)E、F、M、N分别是正方形ABCD四条边上的点,AE=BF=CM=DN,四边形EFMN是什么图形?证明你的结论.25、(10分)如图,已知带孔的长方形零件尺寸(单位:),求两孔中心的距离.26、(12分)甲、乙两个机器人检测零件,甲比乙每小时多检测10个,甲检测300个与乙检测200个所用的时间相等.甲、乙两个机器人每小时各检测零件多少个?

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】

分别求出两正方形的对角线长度即可求解.【详解】由,得到C点(3,0)故AC=∵,正方形与正方形是以的中点为中心的位似图形,∴A’C’=AC-2AA’=∴正方形与正方形的相似比是A’C’:AC=1:3故选A.此题主要考查多边形的相似比,解题的关键是熟知相似比的定义.2、D【解析】

利用二次根式的加减法对A、B进行判断;根据分母有理化对C进行判断;根据完全平方公式对D进行判断.【详解】解:A、原式=﹣,所以A选项错误;B、与不能合并,所以B选项错误;C、原式=,所以C选项错误;D、原式=9﹣6+10=19﹣6,所以D选项正确.故选:D.题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3、C【解析】

直接利用二次根式的乘法运算法则计算得出答案【详解】解:3×故选:C.此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.4、B【解析】

解:设这组数据的平均数为a,将这组数据中的每一个数减去40后所得新数据的平均数为a-40,所以a-40=2,解得a=42故选B.本题考查平均数的定义.5、B【解析】

由勾股定理可求AC的长,即可得AE的范围,则可求解.【详解】解:连接AC,∵在矩形ABCD中,AB=3,BC=4∴AC==5∴E是BC上一点,且与B、C不重合∴3<AE<5,且AE为整数∴AE=4故选B.本题考查了矩形的性质,勾股定理,熟练运用矩形的性质是本题的关键.6、D【解析】

作出图形,根据菱形的对角线互相垂直平分求出、,然后分正方形在的两边两种情况补成以为斜边的,然后求出、,再利用勾股定理列式计算即可得解.【详解】解:,,,,如图1,正方形在的上方时,过点作交的延长线于,,,在中,,如图2,正方形在的下方时,过点作于,,,在中,,综上所述,长为或.故选:.本题考查了菱形的性质,正方形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,难点在于分情况讨论并作辅助线构造出直角三角形,作出图形更形象直观.7、D【解析】

根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、是轴对称图形,故D符合题意.故选D.本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8、C【解析】

根据四边形ABCD为正方形,以及折叠的性质,可以直接得到∠ADG的角度,以及AE=FE,在△BEF中,EF<BE,可以得到2AE<AB,结合三角函数的定义对②作出判断;在△AGD和△OGD中高相等,底不同,可以直接判断其大小,而四边形AEFG是菱形的判定需证得AE=EF=GF=AG;要计算OG和BE的关系,我们需利用到中间量EF,即四边形AEFG的边长,可以转化出BE和OG的关系;当已知△OGF的面积时,根据菱形的性质,可以求得OG的长,进而求出BE的长度,而AE的长度与GF相同,GF可由勾股定理得出,进而求出AB的长度,正方形ABCD的面积也出来了.【详解】∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°.由折叠的性质可得:∠ADG=∠ADO=22.5°,故①正确;∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴>2.故②错误;∵∠AOB=90°,∴AG=FG>OG.∵△AGD与△OGD同高,∴S△AGD>S△OGD.故③错误;∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE.∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF.∵AE=EF,∴AE=GF.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,故④正确;∵四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF=OG,∴BE=EF=×OG=2OG.故⑤正确;∵四边形AEFG是菱形,∴AB∥GF,AB=GF.∵∠BAO=45°,∠GOF=90°,∴△OGF是等腰直角三角形.∵S△OGF=1,∴OG=1,解得OG=,∴BE=2OG=2,GF=,∴AE=GF=2,∴AB=BE+AE=2+2,∴S四边形ABCD=AB=(2+2)=12+8.故⑥错误.∴其中正确结论的序号是①④⑤,共3个.故选C.此题考查正方形的性质,折叠的性质,菱形的性质,三角函数,解题关键在于掌握各性质定理二、填空题(本大题共5个小题,每小题4分,共20分)9、0,1,1【解析】

首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【详解】解不等式得:,∴不等式的非负整数解为0,1,1.故答案为:0,1,1.本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.10、【解析】

根据G、F分别为AD和DE的中点,欲使GF最小,则只要使AE为最短,即AE必为△ABC中BC边上的高,再利用三角形的中位线求解即可.【详解】解:∵G、F分别为AD和DE的中点,∴线段GF为△ADE的边AD及DE上的中位线,∴GF=AE,欲使GF最小,则只要使AE为最短,∴AE必为△ABC中BC边上的高,∵四边形ABCD为一平行四边形且AB=4、∠ABC=60°,作AE⊥BC于E,E为垂足,∴∠BAE=30°,∴BE=2,∴AE=,∴GF=AE=.故答案为.本题考查了最短路径,点到直线的距离及三角形的中位线定理,掌握点到直线的距离及三角形的中位线定理是解题的关键.11、m>1【解析】

根据分式有意义的条件列出不等式,解不等式得到答案.【详解】解:当x2+2x+m≠0时,总有意义,∴△=4-4m<0,解得,m>1故答案为:m>1.本题考查的是分式有意义的条件,掌握分式有意义的条件是分母不等于零是解题的关键.12、【解析】

观察图象,写出直线在直线的下方所对应的自变量的范围即可.【详解】解:观察图象得:当时,,即不等式的解集为.故答案为:.本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数的值大于(或小于)0的自变量的取值范围;从函数图象的角度看,就是确定直线在轴上(或下)方部分所有的点的横坐标所构成的解集.13、45°【解析】

试题解析:∵四边形ABCD为平行四边形,∴AD∥BC,∠B=∠D,且故答案为点睛:平行四边形的对角相等,邻角互补.三、解答题(本大题共5个小题,共48分)14、(1)4;1;(2)见解析;(3)B;(4)48.【解析】

(1)根据题目中的数据即可直接确定m和n的值;

(2)根据(1)的结果即可直接补全直方图;

(3)根据中位数的定义直接求解;

(4)利用总人数乘以对应的比例即可求解.【详解】解:(1)由记录的数据可知,7500≤x<8500的有8430、8215、7638、7850这4个,即m=4;

9500≤x<10500的有9865这1个,即n=1.故答案为4;1;(2)如图:(3)由于一共20个数据,其中位数是第10、11个数据的平均数,

而第10、11个数据的平均数均落在B组,

∴这20名“健步走运动”团队成员一天行走步数的中位数落在B组;故答案为B;(4)120×=48(人),

答:估计其中一天行走步数不少于7500步的有48人.故答案为48.本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.15、(1)假命题,举例如a=1,b=-1;反例不唯一.(2)逆命题为“若a2>b2,则a>b”,该命题也是假命题,举例如a=-2,b=1;反例不唯一.【解析】

(1)判断是否为真命题,需要分析由题设是否能推出结论,本题可从a、b的正负性来考虑反例,如a=1,b=-1来进行检验判断;(2)先写出逆命题,再按照(1)的思路进行判断.【详解】解:(1)假命题,举例如a=1,b=-1,满足a>b,但很明显,,不满足a2>b2,所以原命题是假命题;当然反例不唯一.(2)逆命题为“若a2>b2,则a>b”,该命题也是假命题,举例如a=-2,b=1,满足a2>b2,但不满足a>b;反例也不唯一.本题主要考查命题和逆命题的知识,判断命题的真假关键是熟知课本中有关的定义和性质定理等,另外,正确举出反例是判断假命题的常用方法.16、(1)y=200x+74000(10≤x≤30);(2)将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,这样公司每天获得租金最高,理由见解析.【解析】

(1)根据未知量,找出相关量,列出函数关系式;

(2)利用不等式的性质进行求解,对x进行分类即可;根据一次函数的单调性可直接判断每天获得租金最高的方案,得出结论.【详解】解:(1)由于派往A地的乙型收割机x台,则派往B地的乙型收割机为(30-x)台,派往A,B地区的甲型收割机分别为(30-x)台和(x-10)台.

∴y=1600x+1200(30-x)+1800(30-x)+1600(x-10)=200x+74000(10≤x≤30).

(2)由题意,得200x+74000≥79600,解得x≥28,

∵10≤x≤30,x是正整数,∴x=28、29、30

∴有3种不同分派方案:

①当x=28时,派往A地区的甲型收割机2台,乙型收割机28台,余者全部派往B地区;

②当x=29时,派往A地区的甲型收割机1台,乙型收割机29台,余者全部派往B地区;

③当x=30时,派往A地区的甲型收割机0台,乙型收割机30台,余者全部派往B地区;∵y=200x+74000中,

∴y随x的增大而增大,∴当x=30时,y取得最大值,

此时,y=200×30+74000=80000,∴农机租赁公司将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,这样公司每天获得租金最高,最高租金为80000元.故答案为:(1)y=200x+74000(10≤x≤30);(2)将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,这样公司每天获得租金最高,理由见解析.本题考查利用一次函数解决实际问题,解题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.17、证明见解析.【解析】

根据平行四边形性质得出AD=BC,AD//BC,根据平行线性质求出∠DAF=∠BCE,求出∠AFD=∠CEB,再根据AAS证△ADF≌△CBE即可.【详解】证明:,,,四边形ABCD是平行四边形,,在和中,,≌.本题考查了平行四边形性质、平行线的性质、全等三角形的性质和判定等知识点,关键是推出证△ADF和△CBE全等的三个条件,题目比较好,难度适中.18、(1)见解析;(2)AC=.【解析】

(1)根据勾股定理的逆定理即可得到答案;(2)设AC=x,由题意得到x2=(x﹣1)2+82,计算即可得到答案.【详解】解:(1)∵BC=10,CD=8,BD=1,∴BD2+CD2=BC2,∴△BDC是直角三角形,∴∠CDB=90°;(2)∵AB=AC,∴设AC=x,则AD=x﹣1,∴x2=(x﹣1)2+82,解得:x=,故AB=AC=.本题考查勾股定理及其逆定理,解题的关键是掌握勾股定理.一、填空题(本大题共5个小题,每小题4分,共20分)19、-1.5<m<1【解析】

首先根据题意判断出P点在第二象限,再根据第二象限内点的坐标符号(-,+),可得到不等式组,然后求解不等式组即可得出m的取值范围.【详解】解:∵P(m-1,2m+3)关于y轴对称的点在第一象限,

∴P点在第二象限,

解得:-1.5<m<1,

故答案为:-1.5<m<1.本题考查关于y轴对称的点的坐标特点,各象限内点的坐标符号,解一元一次不等式组.解答本题的关键是判断出P点所在象限并据此列出不等式组.20、7.2cm或cm【解析】①边长3.6cm为短边时,

∵四边形ABCD为矩形,

∴OA=OB,

∵两对角线的夹角为60°,

∴△AOB为等边三角形,

∴OA=OB=AB=3.6cm,

∴AC=BD=2OA=7.2cm;

②边长3.6cm为长边时,

∵四边形ABCD为矩形

∴OA=OB,

∵两对角线的夹角为60°,

∴△AOB为等边三角形,

∴OA=OB=AB,BD=2OB,∠ABD=60°,

∴OB=AB=,∴BD=;故答案是:7.2cm或cm.21、2.4【解析】

根据已知得出四边形AEPF是矩形,得出EF=AP,要使EF最小,只要AP最小即可,根据垂线段最短得出即可.【详解】连接AP,∵∠A=90°,PE⊥AB,PF⊥AC,∴∠A=∠AEP=∠AFP=90°,∴四边形AFPE是矩形,∴EF=AP,要使EF最小,只要AP最小即可,过A作AP⊥BC于P,此时AP最小,在Rt△BAC中,∠A=90°,AC=4,AB=3,由勾股定理得:BC=5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论