2024-2025学年吉林省长春市南关区数学九年级第一学期开学监测模拟试题【含答案】_第1页
2024-2025学年吉林省长春市南关区数学九年级第一学期开学监测模拟试题【含答案】_第2页
2024-2025学年吉林省长春市南关区数学九年级第一学期开学监测模拟试题【含答案】_第3页
2024-2025学年吉林省长春市南关区数学九年级第一学期开学监测模拟试题【含答案】_第4页
2024-2025学年吉林省长春市南关区数学九年级第一学期开学监测模拟试题【含答案】_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页2024-2025学年吉林省长春市南关区数学九年级第一学期开学监测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是()A.矩形 B.菱形 C.正方形 D.无法判断2、(4分)如图,已知矩形中,与相交于,平分交于,,则的度数为()A. B. C. D.3、(4分)解分式方程时,去分母变形正确的是()A. B.C. D.4、(4分)下列叙述,错误的是()A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直平分的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线相等的四边形是矩形5、(4分)如图,动点P从出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角当点P第2018次碰到矩形的边时,点P的坐标为A. B. C. D.6、(4分)关于频率与概率有下列几种说法:①“明天下雨的概率是90%”表示明天下雨的可能性很大;②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;④“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近,正确的说法是()A.②④ B.②③ C.①④ D.①③7、(4分)下列计算正确的是()A.3+2=5 B.C.12÷3=48、(4分)如图,在中,,,是角平分线,,垂足为点.若,则的长是()A. B. C. D.5二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)一个正数的平方根分别是x+1和x﹣3,则这个正数是____________10、(4分)如图,在中,的平分线AD交BC于点D,的两边分别与AB、AC相交于M、N两点,且,若,则四边形AMDN的面积为___________.11、(4分)如图,线段AB的长为4,P为线段AB上的一个动点,△PAD和△PBC都是等腰直角三角形,且∠ADP=∠PCB=90°,则CD长的最小值是____.12、(4分)一次函数y=kx+b(k≠0,k,b为常数)的图象如图所示,则关于x的不等式kx+b<0的解集为______.13、(4分)在平面直角坐标系xOy中,直线与x轴的交点为A,与y轴的交点为B,且,则k的值为_____________.三、解答题(本大题共5个小题,共48分)14、(12分)下面是小明设计的“作平行四边形ABCD的边AB的中点”的尺规作图过程.已知:平行四边形ABCD.求作:点M,使点M为边AB的中点.作法:如图,①作射线DA;②以点A为圆心,BC长为半径画弧,交DA的延长线于点E;③连接EC交AB于点M.所以点M就是所求作的点.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接AC,EB.∵四边形ABCD是平行四边形,∴AE∥BC.∵AE=,∴四边形EBCA是平行四边形()(填推理的依据).∴AM=MB()(填推理的依据).∴点M为所求作的边AB的中点.15、(8分)为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)求被抽样调查的学生有多少人?并补全条形统计图;(2)每天户外活动时间的中位数是小时?(3)该校共有1850名学生,请估计该校每天户外活动时间超过1小时的学生有多少人?16、(8分)如图,已知一次函数y1=ax+b的图象与x轴、y轴分别交于点D、C,与反比例函数y2=的图象交于A、B两点,且点A的坐标是(1,3)、点B的坐标是(3,m).(1)求一次函数与反比例函数的解析式;(2)求C、D两点的坐标,并求△AOB的面积;(3)根据图象直接写出:当x在什么取值范围时,y1>y2?17、(10分)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?18、(10分)快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣,两种型号的机器人的工作效率和价格如表:型号甲乙每台每小时分拣快递件数(件)1000800每台价格(万元)53该公司计划购买这两种型号的机器人共10台,并且使这10台机器人每小时分拣快递件数总和不少于8500件(1)设购买甲种型号的机器人x台,购买这10台机器人所花的费用为y万元,求y与x之间的关系式;(2)购买几台甲种型号的机器人,能使购买这10台机器人所花总费用最少?最少费用是多少?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)一个正多边形的每个内角等于108°,则它的边数是_________.20、(4分)如图,在边长为1的菱形ABCD中,∠ABC=120°连接对角线AC,以AC为边作第二个菱形ACEF,使∠ACE=120°连接AE,再以AE为边作第三个菱形AEGH,使∠AEG=120°,…,按此规律所作的第n个菱形的边长是________.21、(4分)若有意义,则的取值范围是_______22、(4分)如图,在平行四边形ABCD中,AC⊥BC,AD=AC=2,则BD的长为_____.23、(4分)如图,在矩形ABCD中,AB=8,BC=10,E是AB上的一点,将矩形ABCD沿CE折叠后,点B落在AD边的点F上,则AE的长为_________.二、解答题(本大题共3个小题,共30分)24、(8分)甲乙两人同时登山,甲乙两人距地面的高度(米与登山时间(分之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是米分钟,乙在地提速时距地面的高度为米;(2)直接写出甲距地面高度(米和(分之间的函数关系式;(3)若乙提速后,乙的速度是甲登山速度的3倍.请问登山多长时间时,乙追上了甲,此时乙距地的高度为多少米?25、(10分)先化简,再求值:(1-)÷,其中x=2+.26、(12分)解不等式组,并将其解集在数轴上表示出来.(1);(2)

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】

作DF⊥BC,BE⊥CD,先证四边形ABCD是平行四边形.再证Rt△BEC≌Rt△DFC,得,BC=DC,所以,四边形ABCD是菱形.【详解】如图,作DF⊥BC,BE⊥CD,由已知可得,AD∥BC,AB∥CD∴四边形ABCD是平行四边形.在Rt△BEC和Rt△DFC中∴Rt△BEC≌Rt△DFC,∴BC=DC∴四边形ABCD是菱形.故选B本题考核知识点:菱形的判定.解题关键点:通过全等三角形证一组邻边相等.2、B【解析】

因为DE平分∠ADC,可证得△ECD为等腰直角三角形,得EC=CD,因为∠BDE=15°,可求得∠CDO=60°,易证△CDO为等边三角形,等量代换可得CE=CO,即∠COE=∠CEO,而∠ECO=30°,利用三角形内角和为180°,即可求得∠COE=75°.【详解】解:∵四边形ABCD为矩形,且DE平分∠ADC,∴∠CDE=∠CED=45,即△ECD为等腰直角三角形,∴CE=CD,∵∠BDE=15°,∴∠CDO=45°+15°=60°,∵OD=OC,∴△CDO为等边三角形,即OC=OD=CD,∴CE=OC,∴∠COE=∠CEO,而∠OCE=90°-60°=30°,∴∠COE=∠CEO==75°.故选B.本题考查三角形与矩形的综合,难度一般,熟练掌握矩形的性质是顺利解题的关键.3、D【解析】

先对分式方程乘以,即可得到答案.【详解】去分母得:,故选:D.本题考查去分母,解题的关键是掌握通分.4、D【解析】

根据菱形的判定方法,矩形的判定方法,正方形的判定方法,平行四边形的判定方法分别分析即可得出答案.【详解】解:A、根据对角线互相垂直的平行四边形可判定为菱形,再有对角线且相等可判定为正方形,此选项正确,不符合题意;B、根据菱形的判定方法可得对角线互相垂直平分的四边形是菱形正确,此选项正确,不符合题意;C、对角线互相平分的四边形是平行四边形是判断平行四边形的重要方法之一,此选项正确,不符合题意;D、根据矩形的判定方法:对角线互相平分且相等的四边形是矩形,因此只有对角线相等的四边形不能判定是矩形,此选项错误,符合题意;选:D.此题主要考查了菱形,矩形,正方形,平行四边形的判定,关键是需要同学们准确把握矩形、菱形正方形以及平行四边形的判定定理之间的区别与联系.5、C【解析】

理解题意,由反射角与入射角的定义作出图形,观察出反弹6次为一个循环的规律,解答即可.【详解】如图,经过6次反弹后动点回到出发点(0,3),

∵2018÷6=336…2,

∴当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,

点P的坐标为(7,4).

故选C.本题考查了平面直角坐标系中点的坐标规律,首先作图,然后观察出每6次反弹为一个循环,据此解答即可.6、C【解析】

分别利用概率的意义分析得出答案.【详解】①“明天下雨的概率是90%”表示明天下雨的可能性很大;正确;

②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;错误;

③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;错误;

④“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近,正确.

故选C.此题主要考查了概率的意义,正确理解概率的意义是解题关键.7、D【解析】

按二次根式的运算法则分别计算即可.【详解】解:3+2已是最简,故A错误;53·52=256,故B错误;12÷3=4=2,故选择D.本题考查了二次根式的运算.8、D【解析】

先解直角三角形求出DE的长度,在根据角平分线上的点到角的两边距离相等可得AD=DE,从而得解.【详解】解:∵AB=AC,∠A=90°,

∴∠C=41°,

∵DE⊥BC,CD=1,

∴DE=CD•sin41°=1×=1,

∵BD是角平分线,DE⊥BC,∠A=90°,

∴AD=DE=1.

故选:D.本题考查了角平分线上的点到角的两边距离相等的性质,等腰直角三角形的性质,难点在于求出DE的长度.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】

根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【详解】根据题意知x+1+x-3=0,解得:x=1,∴x+1=2∴这个正数是22=1故答案为:1.本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.10、9.【解析】

作DE⊥AB于点E,DF⊥AC于点F,依据HL判定Rt△ADE≌Rt△ADF,即可得出AE=AF;判定△DEM≌△DFN,可得S△DEM=S△DFN,进而得到S四边形AMDN=S四边形AEDF,求得S△ADF=AF×DF=,即可得出结论.【详解】解:作DE⊥AB于点E,DF⊥AC于点F,∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,

∴DE=DF,

又∵DE⊥AB于点E,DF⊥AC于点F,

∴∠AED=∠AFD=90°,

又∵AD=AD,

∴Rt△ADE≌Rt△ADF(HL),

∴AE=AF;∵∠MDN+∠BAC=180°,

∴∠AMD+∠AND=180°,

又∵∠DNF+∠AND=180°

∴∠EMD=∠FND,

又∵∠DEM=∠DFN,DE=DF,

∴△DEM≌△DFN,

∴S△DEM=S△DFN,

∴S四边形AMDN=S四边形AEDF,

∵,AD平分∠BAC,

∴∠DAF=30°,∴Rt△ADF中,DF=3,AF==3,

∴S△ADF=AF×DF=×3×3=,

∴S四边形AMDN=S四边形AEDF=2×S△ADF=9.故答案为9.本题考查全等三角形的性质和判定、角平分线的性质定理等知识;熟练掌握全等三角形的判定与性质是解决问题的关键.11、2.【解析】

设AP=x,PB=4,由等腰直角三角形得到DP与PC,然后在直角三角形DPC中利用勾股定理列出CD与x的关系,列出函数解题即可【详解】设AP=x,PB=4,由等腰直角三角形性质可得到DP=,CP=,又易知三角形DPC为直角三角形,所以DC2=DP2+PC2==,利用二次函数性质得到DC2的最小值为8,所以DC的最小值为,故填本题主要考察等腰直角三角形的性质与二次函数的性质,属于中等难度题,本题关键在于能用x表示出DC的长度12、x>1【解析】

从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b<0的解集.【详解】解:函数y=kx+b的图象经过点(1,0),并且函数值y随x的增大而减小,所以当x>1时,函数值小于0,即关于x的不等式kx+b<0的解集是x>1.故答案为x>1.此题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.13、【解析】

先根据解析式确定点A、B的坐标,再根据三角形的面积公式计算得出答案.【详解】令中y=0得x=-,令x=0得y=2,∴点A(-,0),点B(0,2),∴OA=,OB=2,∵,∴,解得k=,故答案为:.此题考查一次函数图象与坐标轴的交点,一次函数与几何图形面积,正确理解OA、OB的长度是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)详见解析;(2)详见解析【解析】

(1)根据要求作出点M即可.

(2)首先证明四边形EBCA是平行四边形,再利用平行四边形的性质解决问题即可.【详解】解:(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接AC,EB.∵四边形ABCD是平行四边形,∴AE∥BC.∵AE=BC,∴四边形EBCA是平行四边形(一组对边平行且相等的四边形是平行四边形)(填推理的依据).∴AM=MB(平行四边形的对角线互相平分)(填推理的依据).∴点M为所求作的边AB的中点.故答案为(1)详见解析;(2)详见解析.本题考查作图-复杂作图,平行四边形的判定和性质,解题的关键是掌握平行四边形的判定和性质.15、(1)被调查的学生有500人,补全的条形统计图详见解析;(2)1;(3)该校每天户外活动时间超过1小时的学生有740人.【解析】试题分析:(1)根据条形统计图和扇形统计图可以求得被调查学生总数和1.5小时的学生数,从而可以将条形统计图补充完整;(2)根据条形统计图可以得到这组数据的中位数;(3)根据条形统计图可以求得校共有1850名学生,该校每天户外活动时间超过1小时的学生有多少人.试题解析:解:(1)由条形统计图和扇形统计图可得,0.5小时的有100人占被调查总人数的20%,故被调查的人数有:100÷20%=500,1小时的人数有:500﹣100﹣200﹣80=120,即被调查的学生有500人,补全的条形统计图如下图所示,(2)由(1)可知被调查学生500人,由条形统计图可得,中位数是1小时,(3)由题意可得,该校每天户外活动时间超过1小时的学生数为:=740人,即该校每天户外活动时间超过1小时的学生有740人.考点:中位数;用样本估计总体;扇形统计图;条形统计图.16、(1)y1=,y1=﹣x+4;(1)4;(3)当x满足1<x<3、x<2时,则y1>y1.【解析】

(1)把点A(1,3)代入y1=,求出k,得到反比例函数的解析式;再把B(3,m)代入反比例函数的解析式,求出m,得到点B的坐标,把A、B两点的坐标代入y1=ax+b,利用待定系数法求出一次函数的解析式;

(1)把x=2代入一次函数解析式,求出y1=4,得到C点的坐标,把y1=2代入一次函数解析式,求出x=4,得到D点坐标,再根据S△AOB=S△AOD-S△BOD,列式计算即可;

(3)找出一次函数落在反比例函数图象上方的部分对应的自变量的取值即可.【详解】解:(1)把点A(1,3)代入y1=,则3=,即k=3,故反比例函数的解析式为:y1=.把点B的坐标是(3,m)代入y1=,得:m==1,∴点B的坐标是(3,1).把A(1,3),B(3,1)代入y1=ax+b,得,解得,故一次函数的解析式为:y1=﹣x+4;(1)令x=2,则y1=4;令y1=2,则x=4,∴C(2,4),D(4,2),∴S△AOB=S△AOD﹣S△BOD=×4×3﹣×4×1=4;(3)由图像可知x<2、1<x<3时,一次函数落在反比例函数图象上方,故满足y1>y1条件的自变量的取值范围:1<x<3、x<2.本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,函数图象上点的坐标特征,三角形的面积,难度适中.利用了数形结合思想.17、(1)y=﹣200x+1(2)2(3)2【解析】

(1)根据每个工人每天生产的产品个数以及每个产品的利润,表示出总利润即可.(2)根据每天获取利润为14400元,则y=14400,求出即可.(3)根据每天获取利润不低于15200元即y≥15200,求出即可.【详解】解:(1)根据题意得:y=12x×100+10(10﹣x)×180=﹣200x+1.(2)当y=14400时,有14400=﹣200x+1,解得:x=2.∴要派2名工人去生产甲种产品.(3)根据题意可得,y≥15200,即﹣200x+1≥15200,解得:x≤4,∴10﹣x≥2,∴至少要派2名工人去生产乙种产品才合适.18、(1)y=2x+30(2)购买3台甲种型号的机器人,能使购买这10台机器人所花总费用最少,最少费用为36万元【解析】

(1)根据总费用=甲种型号机器人的费用+乙种机器人的费用,求出y与x的关系式即可;(2)根据这10台机器人每小时分拣快递件数总和不少于8500件,列出不等式,求得x的取值范围,再利用(1)中函数,求出y的最小值即可.【详解】解:(1)y与x之间的函数关系式为:y=5x+3(10﹣x)=2x+30;(2)由题可得:1000x+800(10﹣x)≥8500,解得,∵2>0,∴y随x的增大而增大,∴当x=3时,y取得最小值,∴y最小=2×3+30=36,∴购买3台甲种型号的机器人,能使购买这10台机器人所花总费用最少,最少费用为36万元.本题主要考查了一次函数的应用,解决此题的关键是熟练掌握函数的性质.对于一次函数y=kx+b(k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】

由题意可得这个正多边形的每个外角等于72°,然后根据多边形的外角和是360°解答即可.【详解】解:∵一个正多边形的每个内角等于108°,∴这个正多边形的每个外角等于72°,∴这个正多边形的边数为.故答案为:1.本题考查了正多边形的基本知识,属于基础题型,熟知正多边形的每个外角相等、多边形的外角和是360°是解此题的关键.20、【解析】连接DB,∵四边形ABCD是菱形,∴AD=AB,AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=,同理可得AE=AC=()2,AG=AE=3=()3,按此规律所作的第n个菱形的边长为()n−1,故答案为()n−1.点睛:本题是一道找规律的题目.探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x,再利用它们之间的关系,设出其它未知数,然后列方程.21、【解析】

根据二次根式有意义的条件:被开方数为非负数求解即可.【详解】解:代数式有意义,,解得:.故答案为:.本题考查了二次根式有意义的条件,解答本题的关键是掌握被开方数为非负数.22、2【解析】

设AC与BD的交点为O,根据平行四边形的性质,可得AO=CO=1,BO=DO,根据勾股定理可得BO=,即可求BD的长.【详解】解:设AC与BD的交点为O∵四边形ABCD是平行四边形∴AD=BC=2,AD∥BCAO=CO=1,BO=DO∵AC⊥BC∴BO==∴BD=2.故答案为2.本题考

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论