2025届新疆吐鲁番市高昌区第二中学高一数学第一学期期末质量检测模拟试题含解析_第1页
2025届新疆吐鲁番市高昌区第二中学高一数学第一学期期末质量检测模拟试题含解析_第2页
2025届新疆吐鲁番市高昌区第二中学高一数学第一学期期末质量检测模拟试题含解析_第3页
2025届新疆吐鲁番市高昌区第二中学高一数学第一学期期末质量检测模拟试题含解析_第4页
2025届新疆吐鲁番市高昌区第二中学高一数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届新疆吐鲁番市高昌区第二中学高一数学第一学期期末质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若条件p:,q:,则p是q成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既非充分也非必要条件2.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.若则 B.若则C.若则 D.若则3.若函数的定义域是,则函数值域为()A. B.C. D.4.已知直线经过点,,则该直线的斜率是A. B.C. D.5.函数的部分图像是A. B.C. D.6.若函数f(x)=|x|+x3,则f(lg2)++f(lg5)+=()A.2 B.4C.6 D.87.已知函数的最小正周期为π,且关于中心对称,则下列结论正确的是()A. B.C D.8.已知函数的图像如图所示,则A. B.C. D.9.已知两点,点在直线上,则的最小值为()A. B.9C. D.1010.下列有关命题的说法错误的是()A.的增区间为B.“”是“-4x+3=0”的充分不必要条件C.若集合中只有两个子集,则D.对于命题p:.存在,使得,则p:任意,均有二、填空题:本大题共6小题,每小题5分,共30分。11.已知为角终边上一点,且,则______12.已知正实数a,b满足,则的最小值为___________.13.已知偶函数是区间上单调递增,则满足的取值集合是__________14.计算:__________.15.在空间直角坐标系中,设,,且中点为,是坐标原点,则__________16.已知函数的图像恒过定点A,若点A在一次函数的图像上,其中,则的最小值是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,求:(1)的最小正周期及最大值;(2)若且,求的值;(3)若,在有两个不等的实数根,求的取值范围.18.甲、乙、丙三人打靶,他们的命中率分别为,若三人同时射击一个目标,甲、丙击中目标而乙没有击中目标的概率为,乙击中目标而丙没有击中目标的概率为.设事件A表示“甲击中目标”,事件B表示“乙击中目标”,事件C表示“丙击中目标”.已知A,B,C是相互独立事件.(1)求;(2)写出事件包含的所有互斥事件,并求事件发生的概率.19.设函数(1)若,求的值(2)求函数在R上的最小值;(3)若方程在上有四个不相等的实数根,求a的取值范围20.某学习小组在暑期社会实践活动中,通过对某商店一种商品销售情况的调查发现:该商品在过去的一个月内(以30天计)的日销售价格(元)与时间(天)的函数关系近似满足(为正常数).该商品的日销售量(个)与时间(天)部分数据如下表所示:(天)10202530(个)110120125120已知第10天该商品的日销售收入为121元.(I)求的值;(II)给出以下二种函数模型:①,②,请你根据上表中的数据,从中选择你认为最合适的一种函数来描述该商品的日销售量与时间的关系,并求出该函数的解析式;(III)求该商品的日销售收入(元)的最小值.(函数,在区间上单调递减,在区间上单调递增.性质直接应用.)21.已知函数,.(1)若函数在上是减函数,求实数的取值范围;(2)是否存在整数,使得的解集恰好是,若存在,求出的值;若不存在,说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由条件推结论可判断充分性,由结论推条件可判断必要性【详解】由不能推出,例如,但必有,所以p是q成立的必要不充分条件.故选:B.2、D【解析】A项,可能相交或异面,当时,存在,,故A项错误;B项,可能相交或垂直,当

时,存在,,故B项错误;C项,可能相交或垂直,当

时,存在,,故C项错误;D项,垂直于同一平面的两条直线相互平行,故D项正确,故选D.本题主要考查的是对线,面关系的理解以及对空间的想象能力.考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质.3、A【解析】根据的单调性求得正确答案.【详解】根据复合函数单调性同增异减可知在上递增,,即.故选:A4、D【解析】根据斜率公式,,选D.5、D【解析】根据函数的奇偶性和函数值在某个区间上的符号,对选项进行排除,由此得出正确选项.【详解】∵是奇函数,其图像关于原点对称,∴排除A,C项;当时,,∴排除B项.故选D.【点睛】本小题主要考查函数图像的识别,考查函数的单调性,属于基础题.6、A【解析】利用f(x)解析式的特征和对数的计算法则运算即可﹒【详解】由于f(x)=|x|+x3,得f(-x)+f(x)=2|x|,又lg=-lg2,lg=-lg5∴原式=2|lg2|+2|lg5|=2(lg2+lg5)=2故选:A﹒7、B【解析】根据周期性和对称性求得函数解析式,再利用函数单调性即可比较函数值大小.【详解】根据的最小正周期为,故可得,解得.又其关于中心对称,故可得,又,故可得.则.令,解得.故在单调递增.又,且都在区间中,且,故可得.故选:.【点睛】本题考查由三角函数的性质求解析式,以及利用三角函数的单调性比较函数值大小,属综合基础题.8、B【解析】本题首先可以通过图像得出函数的周期,然后通过函数周期得出的值,再然后通过函数过点求出的值,最后将带入函数解析式即可得出结果【详解】因为由图像可知,解得,所以,,因为由图像可知函数过点,所以,解得,取,,,所以,故选B【点睛】本题考查了三角函数的相关性质,主要考查了三角函数图像的相关性质,考查了三角函数的周期性的求法,考查计算能力,考查数形结合思想,是中档题9、C【解析】根据给定条件求出B关于直线的对称点坐标,再利用两点间距离公式计算作答.【详解】依题意,若关于直线的对称点,∴,解得,∴,连接交直线于点,连接,如图,在直线上任取点C,连接,显然,直线垂直平分线段,则有,当且仅当点与重合时取等号,∴,故的最小值为.故选:C10、C【解析】A.利用复合函数的单调性判断;B.利用充分条件和必要条件的定义判断;C.由方程有一根判断;D.由命题p的否定为全称量词命题判断.【详解】A.令,由,解得,由二次函数的性质知:t在上递增,在上递减,又在上递增,由复合函数的单调性知:在上递增,故正确;B.当时,-4x+3=0成立,故充分,当-4x+3=0成立时,解得或,故不必要,故正确;C.若集合中只有两个子集,则集合只有一个元素,即方程有一根,当时,,当时,,解得,所以或,故错误;D.因为命题p:.存在,使得存在量词命题,则其否定为全称量词命题,即p任意,均有,故正确;故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】利用三角函数定义可得:,即可求得:,再利用角的正弦、余弦定义计算得解【详解】由三角函数定义可得:,解得:,则,所以,,.故答案为:.12、##【解析】将目标式转化为,应用柯西不等式求取值范围,进而可得目标式的最小值,注意等号成立条件.【详解】由题设,,则,又,∴,当且仅当时等号成立,∴,当且仅当时等号成立.∴的最小值为.故答案为:.13、【解析】因为为偶函数,所以等价于,又是区间上单调递增,所以.解得.答案为:.点睛:本题属于对函数单调性应用的考查,若函数在区间上单调递增,则时,有,事实上,若,则,这与矛盾,类似地,若在区间上单调递减,则当时有;据此可以解不等式,由函数值的大小,根据单调性就可以得自变量的大小关系.本题中可以利用对称性数形结合即可.14、【解析】直接利用二倍角公式计算得到答案.【详解】.故答案为:.15、【解析】,故16、8【解析】可得定点,代入一次函数得,利用展开由基本不等式求解.【详解】由可得当时,,故,点A在一次函数的图像上,,即,,,当且仅当,即时等号成立,故的最小值是8.故答案为:8.【点睛】本题考查基本不等式的应用,解题的关键是得出定点A,代入一次函数得出,利用“1”的妙用求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)函数的最小正周期为,最大值为;(2);(3).【解析】(1)利用三角恒等变换思想化简函数的解析式为,利用正弦型函数的周期公式可求得函数的最小正周期,利用正弦函数的有界性可求得函数的最大值;(2)求出的取值范围,由可得出,可得出,进而可求得角的值;(3)令,由可求得,由可得出,问题转化为直线与函数在上的图象有两个交点,数形结合可得出关于实数的不等式,由此可解得实数的取值范围.【详解】(1),所以,函数的最小正周期为,最大值为;(2),则,,可得,,解得;(3)当时,,令,则.由可得,即,即,所以,直线与曲线在上的图象有两个交点,如下图所示:由上图可知,当时,即当时,直线与曲线在上的图象有两个交点,因此,实数的取值范围是.【点睛】通过求所求角的某种三角函数值来求角,关键点在选取函数,常遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是,选正、余弦皆可;若角的范围是,选余弦较好;若角的范围为,选正弦较好18、(1)(2)互斥事件有:,【解析】(1)根据相互独立事件的乘法公式列方程即可求得.(2)直接写出事件包含的互斥事件,并利用对立事件的概率公式求事件发生的概率即可.【小问1详解】由题意知,A,B,C为相互独立事件,所以甲、丙击中目标而乙没有击中目标的概率乙击中目标而丙没有击中目标的概率,解得,.【小问2详解】事件包含的互斥事件有:,.19、(1)(2)(3)【解析】(1)利用求得,由此求得.(2)利用换元法,对进行分类讨论,结合二次函数的性质求得正确答案.(3)利用换元法,结合二次函数零点分布等知识来求得的取值范围.【小问1详解】因,所以即此时,由【小问2详解】令,,则,对称轴为①,即,②,即,③,即,综上可知,.【小问3详解】令,由题意可知,当时,有两个不等实数解,所以原题可转化为在内有两个不等实数根所以有20、(I)1,(II);(III)121元【解析】(I)利用列方程,解方程求得的值.(II)根据题目所给表格的数据,判断出日销售量不单调,由此确定选择模型②.将表格数据代入,待定系数法求得的值,也即求得的解析式.(III)将写成分段函数的形式,由计算出日销售收入的解析式,根据函数的单调性求得的最小值.【详解】(I)依题意知第10天该商品的日销售收入为,解得.(II)由题中的数据知,当时间变化时,该商品的日销售量有增有减并不单调,故只能选②.从表中任意取两组值代入可求得(III)由(2)知∴当时,在区间上是单调递减的,在区间上是单调递增,所以当时,取得最小值,且;当时,是单调递减的,所以当时,取得最小值,且.综上所述,当时,取得最小值,且.故该商品的日销售收入的最小值为121元.【点睛】本小题主要考查函数模型在实际生活中的运用,考查利用函数的单调性求最值,考查运算求解能力,属于中档题.21、(1)(2)答案见解析【解析】(1)讨论和时实数的取值范围,再结合的范围与函数的对称轴讨论使得在上是减函数的范围即可;(2)假设存在整数,使得的解集恰好是.则,由,解出整数,再代入不等式检验即可小问1详解】解:令,则.当,即时,恒成立,所以.因为在上是减函数,所以,解得,所以.由,解得或.当时,的图象对称轴,且方程的两根均为正,此时在为减函数,所以符合条件.当时,的图象对称轴,且方程的根为一正一负,要使在单调递减,则,解得.综上可知,实数的取值范围为【小问2详解】解:假设存在整数,使的解集恰好是,则①若函数在上单调

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论