




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届黑龙江省大庆市实验中学数学高二上期末考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,则n的值为()A.7 B.8C.9 D.102.在中,内角的对边分别为,若,则角为A. B.C. D.3.在圆内,过点的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为()A. B.C. D.4.甲、乙两人下棋,甲获胜的概率为30%,甲不输的概率为80%,则甲、乙下成平局的概率()A.50% B.30%C.10% D.60%5.已知抛物线上的点到其准线的距离为,则()A. B.C. D.6.若实数x,y满足不等式组,则的最小值为()A. B.0C. D.27.已知等比数列中,,则由此数列的奇数项所组成的新数列的前项和为()A. B.C. D.8.若函数在上有且仅有一个极值点,则实数的取值范围为()A. B.C. D.9.阿基米德是古希腊著名的数学家、物理学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积,已知在平面直角坐标系中,椭圆的面积为,两焦点与短轴的一个端点构成等边三角形,则椭圆的标准方程是()A. B.C. D.10.命题p:存在一个实数﹐它的绝对值不是正数.则下列结论正确的是()A.:任意实数,它的绝对值是正数,为假命题B.:任意实数,它的绝对值不是正数,为假命题C.:存在一个实数,它的绝对值是正数,为真命题D.:存在一个实数,它的绝对值是负数,为真命题11.已知椭圆和双曲线有共同的焦点,分别是它们的在第一象限和第三象限的交点,且,记椭圆和双曲线的离心率分别为,则等于()A.4 B.2C.2 D.312.已知呈线性相关的变量x与y的部分数据如表所示:若其回归直线方程是,则()x24568y34.5m7.59A.6.5 B.6C.6.1 D.7二、填空题:本题共4小题,每小题5分,共20分。13.设O为坐标原点,抛物线的焦点为F,P为抛物线上一点,若,则的面积为____________14.已知水平放置的是按“斜二测画法”得到如下图所示的直观图,其中,,则原的面积为______.15.已知,为椭圆C的焦点,点P在椭圆C上,,则的面积为___________.16.已知直线,,为抛物线上一点,则到这两条直线距离之和的最小值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在△中,角A,B,C的对边分别是a,b,c,且.(1)求角C的大小;(2)若,求△的面积S的最大值.18.(12分)如图,在多面体ABCEF中,和均为等边三角形,D是AC的中点,(1)证明:(2)若平面平面ACE,求二面角的余弦值.19.(12分)已知数列满足(1)求数列的通项公式;(2)设,求数列的前n项和20.(12分)如图,在四棱锥中,为平行四边形,,平面,且,点是的中点.(1)求证:平面;(2)在线段上(不含端点)是否存在一点,使得二面角的余弦值为?若存在,确定的位置;若不存在,请说明理由.21.(12分)2021年11月初某市出现新冠病毒感染者,该市教育局部署了“停课不停学”的行动,老师们立即开展了线上教学.某中学为了解教学效果,于11月30日复课第一天安排了测试,数学教师为了调查高二年级学生这次测试的数学成绩与每天在线学习数学的时长之间的相关关系,对在校高二学生随机抽取45名进行调查,了解到其中有25人每天在线学习数学的时长不超过1小时,并得到如下的统计图:(1)根据统计图填写下面列联表,是否有95%的把握认为“高二学生的这次摸底考试数学成绩与其每天在线学习数学的时长有关”;数学成绩不超过120分数学成绩超过120分总计每天在线学习数学的时长不超过1小时25每天在线学习数学的时长超过1小时总计45(2)从被抽查的,且这次数学成绩超过120分的学生中,按分层抽样的方法抽取5名,再从这5名同学中随机抽取2名,求这两名同学中至多有一名每天在线学习数学的时长超过1小时的概率附:,其中.参考数据:0.1000.0500.0100.0012.7063.8416.63510.82822.(10分)唐代诗人李颀的诗《古从军行》开头两句说:“白日登上望烽火,黄昏饮马傍交河,”诗中隐含着一个有趣的“将军饮马”问题,这是一个数学问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使得总路程最短?在平面直角坐标系中,将军从点处出发,河岸线所在直线方程为,并假定将军只要到达军营所在区域即为回到军营.军营所在区域可表示为.(1)求“将军饮马”的最短总路程;(2)因军情紧急,将军来不及饮马,直接从A点沿倾斜角为45°的直线路径火速回营,已知回营路径与军营边界的交点为M,N,军营中心与M,N连线的斜率分别为,,试求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据给定条件利用组合数的性质计算作答【详解】因为,则由组合数性质有,即,所以n的值为10.故选:D2、A【解析】因为,那么结合,所以cosA==,所以A=,故答案为A考点:正弦定理与余弦定理点评:本题主要考查正弦定理与余弦定理的基本应用,属于中等题.3、D【解析】由题,求得圆的圆心和半径,易知最长弦,最短弦为过点与垂直的弦,再求得BD的长,可得面积.【详解】圆化简为可得圆心为易知过点的最长弦为直径,即而最短弦为过与垂直的弦,圆心到的距离:所以弦所以四边形ABCD的面积:故选:D4、A【解析】根据甲获胜和甲、乙两人下成平局是互斥事件即可求解.【详解】甲不输有两种情况:甲获胜或甲、乙两人下成平局,甲获胜和甲、乙两人下成平局是互斥事件,所以甲、乙两人下成平局的概率为.故选:A.5、C【解析】首先根据抛物线的标准方程的形式,确定的值,再根据焦半径公式求解.【详解】,,因为点到的准线的距离为,所以,得故选:C6、A【解析】画出可行域,令,则,结合图形求出最小值,即可得解;【详解】解:画出不等式组,表示的平面区域如图阴影部分所示,由,解得,即,令,则.结合图形可知当过点时,取得最小值,且,即故选:A7、B【解析】确实新数列是等比数列及公比、首项后,由等比数列前项和公式计算,【详解】由题意,新数列为,所以,,前项和为故选:B.8、C【解析】根据极值点的意义,可知函数的导函数在上有且仅有一个零点.结合零点存在定理,即可求得的取值范围.【详解】函数则因为函数在上有且仅有一个极值点即在上有且仅有一个零点根据函数零点存在定理可知满足即可代入可得解得故选:C【点睛】本题考查了函数极值点的意义,函数零点存在定理的应用,属于中档题.9、A【解析】由椭圆的面积为和两焦点与短轴的一个端点构成等边三角形,得到求解.【详解】由题意得,解得,所以椭圆的标准方程是.故选:A10、A【解析】根据存在量词命题的否定为全称量词命题判断,再利用特殊值判断命题的真假;【详解】解:因为命题p“存在一个实数﹐它的绝对值不是正数”为存在量词命题,其否定为“任意实数,它的绝对值是正数”,因为,所以为假命题;故选:A11、A【解析】设椭圆的长半轴长为,双曲线的实半轴长为,由定义可得,,在中利用余弦定理可得,即可求出结果.【详解】设椭圆的长半轴长为,双曲线的实半轴长为,不妨设在第一象限,根据椭圆和双曲线定义,得,,,由可得,又,在中,,即,化简得,两边同除以,得.故选:A.【点睛】关键点睛:本题考查共焦点的椭圆与双曲线的离心率问题,解题的关键是利用定义以及焦点三角形的关系列出齐次方程式进行求解.12、A【解析】根据回归直线过样本点的中心进行求解即可.【详解】由题意可得,,则,解得故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据抛物线定义求出点坐标,即可求出面积.【详解】由题可得,设,则由抛物线定义可得,解得,代入抛物线方程可得,所以.故答案为:.14、【解析】根据直观图画出原图,再根据三角形面积公式计算可得.【详解】解:依题意得到直观图的原图如下:且,所以故答案为:【点睛】本题考查斜二测画法中原图和直观图面积之间的关系,属于基础题15、##【解析】设,然后根据椭圆的定义和余弦定理列方程组可求出,再由三角形的面积公式可求得结果【详解】由,得,则,设,则,在中,,由余弦定理得,,所以,所以,所以,所以,故答案为:16、【解析】过作,垂足分别为,由直线为抛物线的准线,转化,当三点共线时,取得最小值【详解】过作,垂足分别为抛物线的焦点为直线为抛物线的准线由抛物线的定义,故,当三点共线时,取得最小值故最小值为点到直线的距离:故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由正弦定理、和角正弦公式及三角形内角的性质可得,进而可得C的大小;(2)由余弦定理可得,根据基本不等式可得,由三角形面积公式求面积的最大值,注意等号成立条件.【小问1详解】由正弦定理知:,∴,又,∴,则,故.【小问2详解】由,又,则,∴,当且仅当时等号成立,∴△的面积S的最大值为.18、(1)证明见解析(2)【解析】(1)根据等腰三角形三线合一的性质得到、,即可得到平面,再根据,即可得证;(2)由面面垂直的性质得到平面,建立如图所示空间直角坐标系,设,即可得到点,,的坐标,最后利用空间向量法求出二面角的余弦值;小问1详解】证明:连接DE因为,且D为AC的中点,所以因为,且D为AC的中点,所以因为平面BDE,平面BDE,且,所以平面因为,所以平面BDE,所以【小问2详解】解:由(1)可知因为平面平面,平面平面,平面,所以平面,所以DC,DB,DE两两垂直以D为原点,分别以,,的方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系设.则,,.从而,设平面BCE的法向量为,则令,得平面ABC的一个法向量为设二面角为,由图可知为锐角,则19、(1)(2)【解析】(1)当时,由,可得,两式相减化简可求得通项,(2)由(1)得,然后利用裂项相消法可求得结果【小问1详解】因为,所以时,,两式作差得,,所以时,,又时,,得,符合上式,所以的通项公式为【小问2详解】由(1)知,所以即数列的前n项和20、(1)见解析(2)存在,【解析】(1)连接交于点,由三角形中位线性质知,由线面平行判定定理证得结论;(2)以为原点建立空间直角坐标系,假设,可用表示出点坐标;根据二面角的向量求法可根据二面角的余弦值构造出关于的方程,从而解得结果.【详解】(1)连接交于点,连接,四边形为平行四边形,为中点,又为中点,,平面,平面,平面;(2)平面,,两两互相垂直,则以为坐标原点,可建立如下图所示的空间直角坐标系:则,,,,,,设,且,则,,即,设平面的法向量,又,,则,令,则,,;设平面的一个法向量,又,,则,令,则,,;,解得:或,二面角的余弦值为,二面角为锐二面角,不满足题意,舍去,即.在线段上存在点,时,二面角的余弦值为.【点睛】本题考查立体几何中的线面平行关系的证明、存在性问题的求解;求解存在性问题的关键是能够利用共线向量的方式将所求点坐标表示出来,进而利用二面角的向量求法构造方程;易错点是忽略二面角的范围,造成参数值求解错误.21、(1)表格见解析,有(2)【解析】(1)根据统计图计算填表即可;(2)根据古典概型计算公式计算即可.【小问1详解】根据统计图可得:每天在线学习数学的时长不超过1小时数学成绩不超过120分的有人,每天在线学习数学的时长不超过1小时数学成绩超过120分的有人,每天在线学习数学的时长超过1小时数学成绩不超过120分的有人,每天在线学习数学的时长超过1小时数学成绩超过120分的有人,可得列联表如下:数学成绩不超过120分数学成绩超过120分总计每天在线学习数学的时长不超过1小时151025每天在线学习数学的时长超过1小时51520总计202545根据列联表中的数据,所以有95%的把握认为“高二学生的这次摸底考试数学成绩与其每天在线学习数学的时长有关”【小问2详解】由列联表可得,被抽查学生中这次数学成绩超过120分的有25人,其中每天在线学习数学的时长不超过1小时的有10人,每天在线学习数学的时长超过1小时的有15人,人数比为2∶3,按分层抽样每天在线学习数学的时长不超过1小时的抽2人,记为:1,2;每天在线学习数学的时长超过1小时的抽3人,记为:a,b,c.所有可能结果如下:,共计10种.设事件A为“两名同学中至多有一名每天在线学习数学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 海上风险评估与应对策略考核试卷
- 糕点烘焙店的品牌差异化考核试卷
- 篷布制造过程中的绿色生产与效率提升措施考核试卷
- 山东理工职业学院《数字电子技术》2023-2024学年第二学期期末试卷
- 天津市和平区名校2025届高三第六次月考试卷(历史试题理)试题含解析
- 武汉华夏理工学院《习近平新时代中国特色社会主义思想概论》2023-2024学年第二学期期末试卷
- 上海戏剧学院《书法书法理论与实践》2023-2024学年第一学期期末试卷
- 江苏省泰州市周庄初级中学2025年初三中考全真模拟卷(七)物理试题含解析
- 四川省达州市开江县重点达标名校2024-2025学年初三3月联考生物试题含解析
- 山东省招远市2025届初三适应性练习卷语文试题含解析
- FZ/T 64014-2009膜结构用涂层织物
- 职业体验活动记录表
- 卫生统计学-回归与相关
- 德国政治制度简介课件
- 高考试卷命题设计的技巧 课件24张
- 合格供应商审查表
- 研究生学位论文修改情况登记表
- 水质自动在线监测系统技术协议1010审计
- DBJ04∕T 258-2016 建筑地基基础勘察设计规范
- 食品公司规章制度
- 七年级地理下双向细目表
评论
0/150
提交评论