上海市华东师大二附中2025届高二数学第一学期期末质量检测试题含解析_第1页
上海市华东师大二附中2025届高二数学第一学期期末质量检测试题含解析_第2页
上海市华东师大二附中2025届高二数学第一学期期末质量检测试题含解析_第3页
上海市华东师大二附中2025届高二数学第一学期期末质量检测试题含解析_第4页
上海市华东师大二附中2025届高二数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市华东师大二附中2025届高二数学第一学期期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若圆上恰有2个点到直线的距离为1,则实数的取值范围为()A B.C. D.2.某校初一有500名学生,为了培养学生良好的阅读习惯,学校要求他们从四大名著中选一本阅读,其中有200人选《三国演义》,125人选《水浒传》,125人选《西游记》,50人选《红楼梦》,若采用分层抽样的方法随机抽取40名学生分享他们的读后感,则选《西游记》的学生抽取的人数为()A.5 B.10C.12 D.153.已知中,内角所对的边分别,若,,,则()A. B.C. D.4.已知椭圆的左,右焦点分别为,,直线与C交于点M,N,若四边形的面积为且,则C的离心率为()A. B.C. D.5.已知为等差数列,为公差,若成等比数列,且,则数列的前项和为()A. B.C. D.6.函数的导函数为,对任意,都有成立,若,则满足不等式的的取值范围是()A. B.C D.7.下列命题中,结论为真命题的组合是()①“”是“直线与直线相互垂直”的充分而不必要条件②若命题“”为假命题,则命题一定是假命题③是的必要不充分条件④双曲线被点平分的弦所在的直线方程为⑤已知过点的直线与圆的交点个数有2个.A.①③④ B.②③④C.①③⑤ D.①②⑤8.由伦敦著名建筑事务所SteynStudio设计的南非双曲线大教堂惊艳世界,该建筑是数学与建筑完美结合造就的艺术品,若将如图所示的大教堂外形弧线的一段近似看成双曲线下支的一部分,离心率为,则该双曲线的渐近线方程为()A. B.C. D.9.已知椭圆的上下顶点分别为,一束光线从椭圆左焦点射出,经过反射后与椭圆交于点,则直线的斜率为()A. B.C. D.10.已知集合,,则A. B.C. D.11.已知平面的一个法向量为,且,则点A到平面的距离为()A. B.C. D.112.和的等差中项与等比中项分别为()A., B.2,C., D.1,二、填空题:本题共4小题,每小题5分,共20分。13.直线被圆所截得的弦中,最短弦所在直线的一般方程是__________14.等比数列中,,,则数列的公比为____.15.写出一个与椭圆有公共焦点的椭圆方程__________16.若椭圆和圆(c为椭圆的半焦距)有四个不同的交点,则椭圆的离心率的取值范围是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列的前n项和为Sn,S9=81,,求:(1)Sn;(2)若S3、、Sk成等比数列,求k18.(12分)某中医药研究所研制出一种新型抗过敏药物,服用后需要检验血液抗体是否为阳性,现有n(n∈N*)份血液样本,每个样本取到的可能性均等,有以下两种检验方式:①逐份检验,需要检验n次;②混合检验,将其中k(k∈N*,2≤k≤n)份血液样本分别取样混合在一起检验,若结果为阴性,则这k份的血液全为阴性,因而这k份血液样本只需检验一次就够了,若检验结果为阳性,为了明确这k份血液究竟哪份为阳性,就需要对这k份再逐份检验,此时这k份血液的检验次数总共为k+1次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是相互独立的,且每份样本是阳性的概率为p(0<p<1).(1)假设有5份血液样本,其中只有两份样本为阳性,若采取逐份检验的方式,求恰好经过3次检验就能把阳性样本全部检验出来的概率.(2)现取其中的k(k∈N*,2≤k≤n)份血液样本,采用逐份检验的方式,样本需要检验的次数记为ξ1;采用混合检验的方式,样本需要检验的总次数记为ξ2.(i)若k=4,且,试运用概率与统计的知识,求p的值;(ii)若,证明:.19.(12分)如图,正方体的棱长为2,点,分别在棱,上运动,且.(1)求证:;(2)求三棱锥的体积的最大值:(3)当,分别是棱,的中点时,求平面与平面的夹角的正弦值.20.(12分)已知函数.(1)求函数在处的切线方程;(2)设为的导数,若方程的两根为,且,当时,不等式对任意的恒成立,求正实数的最小值.21.(12分)已知抛物线:的焦点为,点在上,点在的内侧,且的最小值为.(1)求的方程;(2)为坐标原点,点A在y轴正半轴上,点B,C为E上两个不同的点,其中B点在第四象限,且AB,互相垂直平分,求四边形AOBC的面积.22.(10分)已知等比数列{an}中,a1=1,且2a2是a3和4a1的等差中项.数列{bn}满足b1=1,b7=13,且bn+2+bn=2bn+1.(1)求数列{an}的通项公式;(2)求数列{an+bn}前n项和Tn.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求得圆心到直线的距离,根据题意列出的不等关系式,即可求得的范围.【详解】因为圆心到直线的距离,故要满足题意,只需,解得.故选:A.2、B【解析】根据分层抽样的方法,列出方程,即可求解.【详解】根据分层抽样的方法,可得选《西游记》的学生抽取的人数为故选:B.3、B【解析】利用正弦定理可直接求得结果.【详解】在中,由正弦定理得:.故选:B.4、A【解析】根据题意可知四边形为平行四边形,设,进而得,根据四边形面积求出点M的坐标,再代入椭圆方程得出关于e的方程,解方程即可.【详解】如图,不妨设点在第一象限,由椭圆的对称性得四边形为平行四边形,设点,由,得,因为四边形的面积为,所以,得,由,得,解得,所以,即点,代入椭圆方程,得,整理得,由,得,解得,由,得.故选:A5、C【解析】先利用已知条件得到,解出公差,得到通项公式,再代入数列,利用裂项相消法求和即可.【详解】因为成等比数列,,故,即,故,解得或(舍去),故,即,故的前项和为:.故选:C.【点睛】方法点睛:数列求和的方法:(1)倒序相加法:如果一个数列的前项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些像可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列:或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前项和可以两两结合求解,则称之为并项求和,形如类型,可采用两项合并求解.6、C【解析】构造函数,利用导数分析函数的单调性,将所求不等式变形为,结合函数的单调性即可得解.【详解】对任意,都有成立,即令,则,所以函数在上单调递增不等式即,即因为,所以所以,,解得,所以不等式的解集为故选:C.7、C【解析】求出两直线垂直时m值判断①;由复合命题真值表可判断②;化简不等式结合充分条件、必要条件定义判断③;联立直线与双曲线的方程组成的方程组验证判断④;判定点与圆的位置关系判断⑤作答.【详解】若直线与直线相互垂直,则,解得或,则“”是“直线与直线相互垂直”的充分而不必要条件,①正确;命题“”为假命题,则与至少一个是假命题,不能推出一定是假命题,②不正确;,,则是的必要不充分条件,③正确;由消去y并整理得:,,即直线与双曲线没有公共点,④不正确;点在圆上,则直线与圆至少有一个公共点,而过点与圆相切的直线为,直线不包含,因此,直线与圆相交,有两个交点,⑤正确,所以所有真命题的序号是①③⑤.故选:C8、B【解析】求出的值,可得出双曲线的渐近线方程.【详解】由已知可得,因此,该双曲线的渐近线方程为.故选:B.9、B【解析】根据给定条件借助椭圆的光学性质求出直线AD的方程,进而求出点D的坐标计算作答.【详解】依题意,椭圆的上顶点,下顶点,左焦点,右焦点,由椭圆的光学性质知,反射光线AD必过右焦点,于是得直线AD的方程为:,由得点,则有,所以直线的斜率为.故选:B10、B【解析】由交集定义直接求解即可.【详解】集合,,则.故选B.【点睛】本题主要考查了集合的交集运算,属于基础题.11、B【解析】直接由点面距离的向量公式就可求出【详解】∵,∴,又平面的一个法向量为,∴点A到平面的距离为故选:B12、C【解析】根据等差中项和等比中项的概念分别求值即可.【详解】和的等差中项为,和的等比中项为.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求出直线所过的定点,当该定点为弦的中点时弦长最短,利用点斜式求出直线方程,整理成一般式即可.【详解】即,令,解得即直线过定点圆的圆心为,半径为,最短弦所在直线的方程为整理得最短弦所在直线的一般方程是故答案为:.14、【解析】根据等比数列的定义,结合已知条件,代值计算即可求得结果.【详解】因为是等比数列,设其公比为,又,,故可得,解得.故答案为:.15、(答案不唯一)【解析】根据椭圆的标准方程,以及分析即可【详解】由题可知椭圆的形式应为(,且),可取故答案为:(答案不唯一)16、【解析】当圆的直径介于椭圆长轴和短轴长度范围之间时,椭圆和圆有四个不同的焦点,由此列不等式,解不等式求得椭圆离心率的取值范围.【详解】由于椭圆和圆有四个焦点,故圆的直径介于椭圆长轴和短轴长度范围之间,即.由得,两边平方并化简得,即①.由得,两边平方并化简得,解得②.由①②得.故填.【点睛】本小题主要考查椭圆和圆的位置关系,考查椭圆离心率取值范围的求法,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)Sn=n2(2)11【解析】(1)由等差数列前n项和公式与下标和性质先求,然后结合可解;(2)由(1)中结论和已知列方程可解.【小问1详解】由,解得,又∵,∴,,∴【小问2详解】∵S3,S17–S16,Sk成等比数列,∴S3Sk=(S17–S16)2=,即9k2=332,解得:k=1118、(1);(2)(i);(ii)证明见解析.【解析】(1)设恰好经过3次检验就能把阳性样本全部检验出来为事件A,由古典概型概率计算公式可得答案;(2)(i)由已知,可能取值分别为1,,求解概率然后求期望推出关于的关系式;(ii)由,计算出,再由,构造函数,利用导数判断函数的最值可得答案..【详解】(1)设恰好经过3次检验就能把阳性样本全部检验出来为事件A,所以前2次检验中有一阳性有一阴性样本第三次为阳性样本,或者前3次均为阴性样本,则.(2)(i),所以,可能取值分别为1,,,,因为得,因为,所以,.(ii)因为,由(i)知,所以,设,,所以在单调递增,所以由于,所以,即,得证.【(4)(5)选做】19、(1)证明见解析(2)(3)【解析】(1)向量垂直的充要条件是内积为零,建立空间直角坐标系,计算向量内积;(2)利用一元二次函数,求解体积的最大值;(3)利用平面的法向量求二面角的正弦值.【小问1详解】如下图所示,以原点,,,所在直线分别轴、轴、轴,建立空间直角坐标系,设,则,,,,则,,因为,所以,即.【小问2详解】因为,所以故的最大值为【小问3详解】设平面的一个法向量,因为此时,,所以由得取,得,,又可取平面的一个法向量,所以故平面与平面的夹角的正弦值.20、(1)(2)1【解析】(1)先求导数,根据导数的几何意义可求得切线方程;(2)将已知方程结合其两根,进行变式,求得,利用该式再将不等式变形,然后将不等式的恒成立问题变为函数的最值问题求解.【小问1详解】由题意可得,所以切点为,则切线方程为:.【小问2详解】由题意有:,则,因为分别是方程的两个根,即.两式相减,则,则不等式,可变为,两边同时除以得,,令,则在上恒成立.整理可得,在上恒成立,令,则,①当,即时,在上恒成立,则在上单调递增,又,则在上恒成立;②当,即时,当时,,则在上单调递减,则,不符合题意.综上:,所以的最小值为1.21、(1)(2)【解析】(1)根据题意,结合抛物线定义,可求得,即得抛物线方程;(2)由题意推出四边形AOBC是菱形.,设,根据抛物线的对称性,可表示出B,C的坐标,从而利用向量的坐标运算,求得所设参数值,进而求得答案.【小问1详解】的准线为:,作于R,根据抛物线的定义有,所以,因为在的内侧,所以当P,Q,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论