2025届浙江省丽水市四校联考数学高一上期末学业质量监测试题含解析_第1页
2025届浙江省丽水市四校联考数学高一上期末学业质量监测试题含解析_第2页
2025届浙江省丽水市四校联考数学高一上期末学业质量监测试题含解析_第3页
2025届浙江省丽水市四校联考数学高一上期末学业质量监测试题含解析_第4页
2025届浙江省丽水市四校联考数学高一上期末学业质量监测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省丽水市四校联考数学高一上期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线,且,则的值为()A.或 B.C. D.或2.抛掷两枚均匀的骰子,记录正面朝上的点数,则下列选项的两个事件中,互斥但不对立的是()A.事件“点数之和为奇数”与事件“点数之和为9”B.事件“点数之和为偶数”与事件“点数之和为奇数”C.事件“点数之和为6”与事件“点数之和为9”D.事件“点数之和不小于9”与事件“点数之和小于等于8”3.下列四个函数中,以为最小正周期,且在区间上为减函数的是A. B.C. D.4.已知,则()A.-4 B.4C. D.5.在中,“角为锐角”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知正方体ABCD-ABCD中,E、F分别为BB、CC的中点,那么异面直线AE与DF所成角的余弦值为A. B.C. D.7.设,则与终边相同的角的集合为A. B.C. D.8.已知函数一部分图象如图所示,如果,,,则()A. B.C. D.9.在区间上单调递减的函数是()A. B.C. D.10.函数的最小正周期为,若其图象向左平移个单位后得到的函数为奇函数,则函数的图象()A.关于点对称 B.关于点对称C.关于直线对称 D.关于直线对称二、填空题:本大题共6小题,每小题5分,共30分。11.下列五个结论:集合2,3,4,5,,集合,若f:,则对应关系f是从集合A到集合B的映射;函数的定义域为,则函数的定义域也是;存在实数,使得成立;是函数的对称轴方程;曲线和直线的公共点个数为m,则m不可能为1;其中正确有______写出所有正确的序号12.如图所示,中,,边AC上的高,则其水平放置的直观图的面积为______13.已知函数在区间是单调递增函数,则实数的取值范围是______14.若函数满足:对任意实数,有且,当时,,则时,________15.已知,求________16.已知定义域为R的偶函数满足,当时,,则方程在区间上所有的解的和为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=2asin+b的定义域为,函数最大值为1,最小值为-5,求a和b的值18.(1)计算(2)已知,求的值19.集合A={x|},B={x|};(1)用区间表示集合A;(2)若a>0,b为(t>2)的最小值,求集合B;(3)若b<0,A∩B=A,求a、b的取值范围.20.已知(1)求函数的单调递增区间;(2)当时,函数的值域为,求实数的范围21.已知方程(1)若此方程表示圆,求的取值范围;(2)若此方程表示圆,且点在圆上,求过点的圆的切线方程

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】当时,直线,,此时满足,因此适合题意;当时,直线,化为,可得斜率,化为,可得斜率∵,∴,计算得出,综上可得:或本题选择D选项.2、C【解析】利用对立事件、互斥事件的定义直接求解【详解】对于,二者能同时发生,不是互斥事件,故错误;对于,二者不能同时发生,也不能同时不发生,是对立事件,故错误;对于,二者不能同时发生,但能同时不发生,是互斥但不对立事件,故正确;对于,二者不能同时发生,也不能同时不发生,是对立事件,故错误故选:3、A【解析】最小正周期,且在区间上为减函数,适合;最小正周期为,不适合;最小正周期为,在区间上不单调,不适合;最小正周期为,在区间上为增函数,不适合.故选A4、C【解析】已知,可得,根据两角差的正切公式计算即可得出结果.【详解】已知,则,.故选:C.5、D【解析】分析条件与结论的关系,根据充分条件和必要条件的定义确定正确选项.【详解】若角为锐角,不妨取,则,所以“角为锐角”是“”的不充分条件,由,可得,所以角不一定为锐角,所以“角为锐角”是“”的不必要条件,所以“角为锐角”是“”的既不充分也不必要条件,故选:D.6、C【解析】连接DF,因为DF与AE平行,所以∠DFD即为异面直线AE与DF所成角的平面角,设正方体的棱长为2,则FD=FD=,由余弦定理得cos∠DFD==.7、B【解析】由终边相同的角的概念,可直接得出结果.【详解】因为,所以与终边相同的角为.故选B【点睛】本题主要考查终边相同的角,熟记概念即可得出结果,属于基础题型.8、C【解析】先根据函数的最大值和最小值求得和,然后利用图象求得函数的周期,求得,最后根据时取最大值,求得【详解】解:如图根据函数的最大值和最小值得求得函数的周期为,即当时取最大值,即故选C【点睛】本题主要考查了由的部分图象确定其解析式.考查了学生基础知识的运用和图象观察能力9、C【解析】依次判断四个选项的单调性即可.【详解】A选项:增函数,错误;B选项:增函数,错误;C选项:当时,,为减函数,正确;D选项:增函数,错误.故选:C.10、C【解析】求得,求出变换后的函数解析式,根据已知条件求出的值,然后利用代入检验法可判断各选项的正误.【详解】由题意可得,则,将函数的图象向左平移个单位后,得到函数的图象,由于函数为奇函数,则,所以,,,则,故,因为,,故函数的图象关于直线对称.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由,,结合映射的定义可判断;由由,解不等式可判断;由辅助角公式和正弦函数的值域,可判断;由正弦函数的对称轴,可判断;由的图象可判断交点个数,可判断【详解】由于,,B中无元素对应,故错误;函数的定义域为,由,可得,则函数的定义域也是,故正确;由于的最大值为,,故不正确;由为最小值,是函数的对称轴方程,故正确;曲线和直线的公共点个数为m,如图所示,m可能为0,2,3,4,则m不可能为1,故正确,故答案为【点睛】本题主要考查函数的定义域、值域和对称性、图象交点个数,考查运算能力和推理能力,属于基础题12、.【解析】直接根据直观图与原图像面积的关系求解即可.【详解】的面积为,由平面图形的面积与直观图的面积间的关系.故答案为:.13、【解析】求出二次函数的对称轴,即可得的单增区间,即可求解.【详解】函数的对称轴是,开口向上,若函数在区间是单调递增函数,则,故答案为:14、【解析】由,可知.所以函数是周期为4的周期函数.,时,..对任意实数,有,可知函数关于点(1,0)中心对称,所以,又.所以.综上可知,时,.故答案为.点睛:抽象函数的周期性:(1)若,则函数周期为T;(2)若,则函数周期为(3)若,则函数的周期为;(4)若,则函数的周期为.15、【解析】由条件利用同角三角函数的基本关系求得和的值,再利用两角和差的三角公式求得的值【详解】∵,∴,,,∴,∴故答案为:16、【解析】根据给定条件,分析函数,函数的性质,再在同一坐标系内作出两个函数图象,结合图象计算作答.【详解】当时,,则函数在上单调递减,函数值从减到0,而是R上的偶函数,则函数在上单调递增,函数值从0增到,因,有,则函数的周期是2,且有,即图象关于直线对称,令,则函数在上递增,在上递减,值域为,且图象关于直线对称,在同一坐标系内作出函数和的图象,如图,观察图象得,函数和在上的图象有8个交点,且两两关于直线对称,所以方程在区间上所有解的和为.故答案为:【点睛】方法点睛:函数零点个数判断方法:(1)直接法:直接求出f(x)=0的解;(2)图象法:作出函数f(x)的图象,观察与x轴公共点个数或者将函数变形为易于作图的两个函数,作出这两个函数的图象,观察它们的公共点个数.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、a=12-6,b=-23+12,或a=-12+6,b=19-12.【解析】∵0≤x≤,∴-≤2x-≤.∴-≤sin≤1.若a>0,则,解得,若a<0,则,解得,综上可知,a=12-6,b=-23+12,或a=-12+6,b=19-12.18、(1);(2)3.【解析】(1)由题意结合对数的运算法则和对数恒等式的结论可得原式的值为;(2)令,计算可得原式.试题解析:(1);(2)设则,所以

.19、(1);(2);(3),.【解析】(1)解分式不等式即可得集合A;(2)利用基本不等式求得b的最小值,将b代入并因式分解,即可得解;(3)由题意知A⊆B,对a分类讨论即求得范围【详解】解:(1)由,有,解得x≤﹣2或x>3∴A=(-∞,-2]∪(3,+∞)(2)t>2,当且仅当t=5时取等号,故即为:且a>0∴,解得故B={x|}(3)b<0,A∩B=A,有A⊆B,而可得:a=0时,化为:2x﹣b<0,解得但不满足A⊆B,舍去a>0时,解得:或但不满足A⊆B,舍去a<0时,解得或∵A⊆B∴,解得∴a、b的取值范围是a∈,b∈(-4,0).【点评】本题考查了集合运算性质、不等式的解法、分类讨论方法,考查了推理能力与计算能力,属于中档题.20、(1),(2)【解析】(1)根据正弦函数的性质计算可得;(2)首先求出函数取最大值时的取值集合,即可得到,再根据函数在上是减函数,且,则的最大值为内使函数值为的值,即可求出的取值范围;【小问1详解】解:对于函数,令,,求得,故函数的单调递增区间为,【小问2详解】解:令,,解得,.即时取得最大值因为当时,取到最大值,所以又函数在上是减函数,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论