广西桂林、贺州、崇左三市2025届数学高二上期末联考试题含解析_第1页
广西桂林、贺州、崇左三市2025届数学高二上期末联考试题含解析_第2页
广西桂林、贺州、崇左三市2025届数学高二上期末联考试题含解析_第3页
广西桂林、贺州、崇左三市2025届数学高二上期末联考试题含解析_第4页
广西桂林、贺州、崇左三市2025届数学高二上期末联考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西桂林、贺州、崇左三市2025届数学高二上期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.与直线平行,且经过点(2,3)的直线的方程为()A. B.C. D.2.若正整数N除以正整数m后的余数为n,则记为,如.如图所示的程序框图的算法源于我国古代闻名中外的“中国剩余定理”.执行该程序框图,则输出的i等于()A.7 B.10C.13 D.163.已知圆的方程为,直线:恒过定点,若一条光线从点射出,经直线上一点反射后到达圆上的一点,则的最小值是()A.3 B.4C.5 D.64.若连续抛掷两次骰子得到的点数分别为m,n,则点P(m,n)在直线x+y=4上的概率是()A. B.C. D.5.已知椭圆,则它的短轴长为()A.2 B.4C.6 D.86.已知集合A=()A. B.C.或 D.7.在一个正方体中,为正方形四边上的动点,为底面正方形的中心,分别为中点,点为平面内一点,线段与互相平分,则满足的实数的值有A.0个 B.1个C.2个 D.3个8.已知圆与圆没有公共点,则实数a的取值范围为()A. B.C. D.9.如果椭圆上一点到焦点的距离等于6,则线段的中点到坐标原点的距离等于()A.7 B.10C.12 D.1410.设为抛物线焦点,直线,点为上任意一点,过点作于,则()A.3 B.4C.2 D.不能确定11.已知直线在两个坐标轴上的截距之和为7,则实数m的值为()A.2 B.3C.4 D.512.直线的倾斜角为()A B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.过点作圆的切线,则切线的方程为________14.已知椭圆的离心率为.(1)证明:;(2)若点在椭圆的内部,过点的直线交椭圆于、两点,为线段的中点,且.①求直线的方程;②求椭圆的标准方程.15.若函数在[1,3]单调递增,则a的取值范围___16.在等比数列中,已知,则__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)一款小游戏的规则如下:每盘游戏都需抛掷骰子三次,出现一次或两次“6点”获得15分,出现三次“6点”获得120分,没有出现“6点”则扣除12分(即获得-12分)(Ⅰ)设每盘游戏中出现“6点”的次数为X,求X的分布列;(Ⅱ)玩两盘游戏,求两盘中至少有一盘获得15分概率;(Ⅲ)玩过这款游戏的许多人发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析解释上述现象18.(12分)在直角坐标系中,以坐标原点O为圆心的圆与直线相切.(1)求圆O的方程;(2)设圆O交x轴于A,B两点,点P在圆O内,且是、的等比中项,求的取值范围.19.(12分)已知椭圆的长轴长是6,离心率是.(1)求椭圆E的标准方程;(2)设O为坐标原点,过点的直线l与椭圆E交于A,B两点,判断是否存在常数,使得为定值?若存在,求出的值;若不存在,请说明理由.20.(12分)某高校在今年的自主招生考试成绩中随机抽取100名考生的笔试成绩,分为5组制出频率分布表如图所示.组号分组频数频率150052350.35330b4cd5100.1(1)求b,c,d的值;(2)该校决定在成绩较好的3、4、5组用分层抽样抽取6名学生进行面试,则每组应各抽多少名学生?(3)在(2)的前提下,从抽到6名学生中再随机抽取2名被甲考官面试,求这2名学生来自同一组的概率.21.(12分)设等差数列的前项和为,已知.(1)求数列的通项公式;(2)当为何值时,最大,并求的最大值.22.(10分)阿基米德(公元前287年---公元前212年,古希腊)不仅是著名的哲学家、物理学家,也是著名的数学家,他利用“逼近法”得到椭圆面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.在平面直角坐标系中,椭圆的面积等于,且椭圆的焦距为.(1)求椭圆的标准方程;(2)点是轴上的定点,直线与椭圆交于不同的两点,已知A关于轴的对称点为,点关于原点的对称点为,已知三点共线,试探究直线是否过定点.若过定点,求出定点坐标;若不过定点,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由直线平行及直线所过的点,应用点斜式写出直线方程即可.【详解】与直线平行,且经过点(2,3)的直线的方程为,整理得故选:C2、C【解析】根据“中国剩余定理”,进而依次执行循环体,最后求得答案.【详解】由题意,第一步:,余数不为1;第二步:,余数不为1;第三步:,余数为1,执行第二个判断框,余数不为2;第四步:,执行第一个判断框,余数为1,执行第二个判断框,余数为2.输出的i值为13.故选:C.3、B【解析】求得定点,然后得到关于直线对称点为,然后可得,计算即可.【详解】直线可化为,令解得所以点的坐标为.设点关于直线的对称点为,则由,解得,所以点坐标为.由线段垂直平分线的性质可知,,所以(当且仅当,,,四点共线时等号成立),所以的最小值为4.故选:B.4、D【解析】利用分布计数原理求出所有的基本事件个数,在求出点落在直线x+y=4上包含的基本事件个数,利用古典概型的概率个数求出.解:连续抛掷两次骰子出现的结果共有6×6=36,其中每个结果出现的机会都是等可能的,点P(m,n)在直线x+y=4上包含的结果有(1,3),(2,2),(3,1)共三个,所以点P(m,n)在直线x+y=4上的概率是3:36=1:12,故选D考点:古典概型点评:本题考查先判断出各个结果是等可能事件,再利用古典概型的概率公式求概率,属于基础题5、B【解析】根据椭圆短轴长的定义进行求解即可.【详解】由椭圆的标准方程可知:,所以该椭圆的短轴长为,故选:B6、A【解析】先求出集合,再根据集合的交集运算,即可求出结果.【详解】因为集合,所以.故选:A.7、C【解析】因为线段D1Q与OP互相平分,所以四点O,Q,P,D1共面,且四边形OQPD1为平行四边形.若P在线段C1D1上时,Q一定在线段ON上运动,只有当P为C1D1的中点时,Q与点M重合,此时λ=1,符合题意若P在线段C1B1与线段B1A1上时,在平面ABCD找不到符合条件Q;在P在线段D1A1上时,点Q在直线OM上运动,只有当P为线段D1A1的中点时,点Q与点M重合,此时λ=0符合题意,所以符合条件的λ值有两个故选C.8、B【解析】求出圆、的圆心和半径,再由两圆没有公共点列不等式求解作答.【详解】圆的圆心,半径,圆的圆心,半径,,因圆、没有公共点,则有或,即或,又,解得或,所以实数a的取值范围为.故选:B9、A【解析】可由椭圆方程先求出,在利用椭圆的定义求出,利用已知求解出,再取的中点,连接,利用中位线,即可求解出线段的中点到坐标原点的距离.【详解】因为椭圆,,所以,结合得,,取的中点,连接,所以为的中位线,所以.故选:A.10、A【解析】由抛物线方程求出准线方程,由题意可得,由抛物线的定义可得,即可求解.【详解】由可得,准线为,设,由抛物线的定义可得,因为过点作于,可得,所以,故选:A.11、C【解析】求出直线方程在两坐标轴上的截距,列出方程,求出实数m的值.【详解】当时,,故不合题意,故,,令得:,令得:,故,解得:.故选:C12、C【解析】设直线倾斜角为,则,再结合直线的斜率与倾斜角的关系求解即可.【详解】设直线的倾斜角为,则,∵,所以.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由已知可得点M在圆C上,则过M作圆的切线与CM所在的直线垂直,求出斜率,进而可得直线方程.【详解】由圆得到圆心C的坐标为(0,

0),圆的半径,而所以点M在圆C上,则过M作圆的切线与CM所在的直线垂直,又,得到CM所在直线的斜率为,所以切线的斜率为,则切线方程为:即故答案为:.14、(1)证明见解析;(2)①;②.【解析】(1)由可证得结论成立;(2)①设点、,利用点差法可求得直线的斜率,利用点斜式可得出所求直线的方程;②将直线的方程与椭圆的方程联立,列出韦达定理,由可得出,利用平面向量数量积的坐标运算可得出关于的等式,可求出的值,即可得出椭圆的方程.【详解】(1),,因此,;(2)①由(1)知,椭圆的方程为,即,当在椭圆的内部时,,可得.设点、,则,所以,,由已知可得,两式作差得,所以,所以,直线方程为,即.所以,直线的方程为;②联立,消去可得.,由韦达定理可得,,又,而,,,解得合乎题意,故,因此,椭圆的方程为.15、【解析】由在区间上恒成立来求得的取值范围.【详解】依题意在区间上恒成立,在上恒成立,所以.故答案为:16、32【解析】根据已知求出公比即可求出答案.【详解】设等比数列的公比为,则,则,所以.故答案为:32.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)分布列见解析(Ⅱ)(Ⅲ)见解析【解析】(Ⅰ)先得到可能的取值为,,,,根据每次抛掷骰子,出现“6点”的概率为,得到每种取值的概率,得到分布列;(Ⅱ)计算出每盘游戏没有获得15分的概率,从而得到两盘中至少有一盘获得15分的概率;(Ⅲ)设每盘游戏得分为,得到的分布列和数学期望,从而得到结论.【详解】解:(Ⅰ)可能的取值为,,,.每次抛掷骰子,出现“6点”的概率为.,,,,所以X的分布列为:0123(Ⅱ)设每盘游戏没有得到15分为事件,则.设“两盘游戏中至少有一次获得15分”为事件,则因此,玩两盘游戏至少有一次获得15分的概率为.(Ⅲ)设每盘游戏得分为.由(Ⅰ)知,的分布列为:Y-1215120P的数学期望为.这表明,获得分数的期望为负因此,多次游戏之后分数减少的可能性更大【点睛】本题考查求随机变量的分布列和数学期望,求互斥事件的概率,属于中档题.18、(1);(2).【解析】(1)根据题意设出圆方程,结合该圆与直线相切,求得半径,则问题得解;(2)设出点的坐标为,根据题意,求得的等量关系,再构造关于的函数关系,求得函数值域即可.【小问1详解】根据题意,设的方程为,又该圆与直线相切,故可得,则圆的方程为.【小问2详解】对圆:,令,则,不妨设,则,设点,因为点在圆内,故;因为是、的等比中项,故可得:,则,整理得;由可得,解得,则.故答案为:.19、(1);(2)存在,.【解析】(1)根据给定条件求出椭圆长短半轴长即可代入计算作答.(2)当直线l的斜率存在时,设出直线l的方程,与椭圆E的方程联立,利用韦达定理、向量数量积运算,推理计算作答.【小问1详解】依题意,,半焦距为c,则离心率,即,有,所以椭圆E的标准方程为:.【小问2详解】当直线l的斜率存在时,设直线l的方程为,由消去y并整理得:,设,则,,,,,,要使为定值,必有,解得,此时,当直线l的斜率不存在时,由对称性不妨令,,,当时,,即当时,过点的任意直线l与椭圆E交于A,B两点,恒有,所以存在满足条件.【点睛】方法点睛:求定值问题常见的方法:(1)从特殊入手,求出定值,再证明这个值与变量无关(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值20、(1),,(2)第三组应抽人,第四组应抽人,第五组应抽人(3)【解析】(1)根据频率分布表的数据求出b,c,d的值;(2)三个组共有60人,从而利用分层抽样抽样方法抽取6名学生第三组应抽3人,第四组应抽2人,第五组应抽1人;(3)记第三组抽出的3人分别为,第四组抽出的2人分别为,第五组抽出的1人为,利用列举法结合概率公式得出答案.【小问1详解】由题意得,,【小问2详解】三个组共有60人,所以第三组应抽人,第四组应抽人,第五组应抽人.【小问3详解】记第三组抽出的3人分别为,第四组抽出的2人分别为,第五组抽出的1人为,从这6人中随机抽取2人,基本事件包含,共15个基本事件.其中2人来自同一组的情况有,共4种.所以,2人来自同一组的概率为.21、(1)(2)n为6或7;126【解析】(1)设等差数列的公差为d,利用等差数列的通项公式求解;(2)由,利用二次函数的性质求解.【小问1详解】解:设等差数列的公差为d,因为.所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论