2025届四川省宜宾市南溪区第三初级中学数学高一上期末学业水平测试试题含解析_第1页
2025届四川省宜宾市南溪区第三初级中学数学高一上期末学业水平测试试题含解析_第2页
2025届四川省宜宾市南溪区第三初级中学数学高一上期末学业水平测试试题含解析_第3页
2025届四川省宜宾市南溪区第三初级中学数学高一上期末学业水平测试试题含解析_第4页
2025届四川省宜宾市南溪区第三初级中学数学高一上期末学业水平测试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届四川省宜宾市南溪区第三初级中学数学高一上期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的零点个数为()A. B.C. D.2.函数的定义城为()A B.C. D.3.函数的值域为()A. B.C. D.4.已知,则A. B.C. D.5.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的直角梯形,其中BC=AB=2,则原平面图形的面积为()A. B.C. D.6.已知函数,下列结论正确的是()A.函数图像关于对称B.函数在上单调递增C.若,则D.函数的最小值为7.若方程表示圆,则实数的取值范围为()A. B.C. D.8.已知函数,有下面四个结论:①的一个周期为;②的图像关于直线对称;③当时,的值域是;④在(单调递减,其中正确结论的个数是()A.1 B.2C.3 D.49.若集合,则集合的所有子集个数是A.1 B.2C.3 D.410.已知向量和的夹角为,且,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数在上单调递增,则的取值范围是__________12.“”是“”的_______条件.(填“充分不必要”、“必要不充分”、“充分必要”、“既不充分又不必要”中的一个)13.若命题,,则的否定为___________.14.若,则的终边所在的象限为______15.设函数,则____________.16.函数的定义域为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆经过两点,且圆心在直线上.(1)求圆的标准方程;(2)若直线过点,且被圆截得的弦长为,求直线的方程.18.已知(1)若p为真命题,求实数x的取值范围(2)若p为q成立的充分不必要条件,求实数a的取值范围19.某市有,两家乒乓球俱乐部,两家的设备和服务都很好,但收费标准不同,俱乐部每张球台每小时5元,俱乐部按月收费,一个月中以内(含)每张球台90元,超过的部分每张球台每小时加收2元.某学校准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于,也不超过(1)设在俱乐部租一-张球台开展活动的收费为元,在俱乐部租一张球台开展活动的收费为元,试求和的解析式;(2)问选择哪家俱乐部比较合算?为什么?20.已知函数.(1)求函数的最小正周期和单调区间;(2)求函数在上的值域.21.已知函数对任意实数x,y满足,,当时,判断在R上的单调性,并证明你的结论是否存在实数a使f

成立?若存在求出实数a;若不存在,则说明理由

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】当时,令,故,符合;当时,令,故,符合,所以的零点有2个,选B.2、C【解析】由对数函数的性质以及根式的性质列不等式组,即可求解.【详解】由题意可得解得,所以原函数的定义域为,故选:C3、C【解析】由二倍角公式化简,设,利用复合函数求值域.【详解】函数,设,,则,由二次函数的图像及性质可知,所以的值域为,故选:C.4、D【解析】考点:同角间三角函数关系5、C【解析】先求出直观图中,∠ADC=45°,AB=BC=2,,DC=4,即可得到原图形是一个直角梯形和各个边长及高,直接求面积即可.【详解】直观图中,∠ADC=45°,AB=BC=2,DC⊥BC,∴,DC=4,∴原来的平面图形上底长为2,下底为4,高为的直角梯形,∴该平面图形的面积为.故选:C6、A【解析】本题首先可以去绝对值,将函数变成分段函数,然后根据函数解析式绘出函数图像,最后结合函数图像即可得出答案.【详解】由题意可得:,即可绘出函数图像,如下所示:故对称轴为,A正确;由图像易知,函数在上单调递增,上单调递减,B错误;要使,则,由图象可得或、或,故或或,C错误;当时,函数取最小值,最小值,D错误,故选:A【点睛】本题考查三角函数的相关性质,主要考查三角函数的对称轴、三角函数的单调性以及三角函数的最值,考查分段函数,考查数形结合思想,是难题.7、D【解析】将方程化为标准式即可.【详解】方程化为标准式得,则.故选:D.8、B【解析】函数周期.,故是函数的对称轴.由于,故③错误.,函数在不单调.故有个结论正确.【点睛】本题主要考查三角函数图像与性质,包括了周期性,对称性,值域和单调性.三角函数的周期性,其中正弦和余弦函数的周期都是利用公式来求解,而正切函数函数是利用公式来求解.三角函数的对称轴是使得函数取得最大值或者最小值的地方.对于选择题9、D【解析】根据题意,集合的所有子集个数,选10、D【解析】根据数量积的运算律直接展开,将向量的夹角与模代入数据,得到结果【详解】=8+3-18=8+3×2×3×-18=-1,故选D.【点睛】本题考查数量积的运算,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题意根据函数在区间上为增函数及分段函数的特征,可求得的取值范围【详解】∵函数在上单调递增,∴函数在区间上为增函数,∴,解得,∴实数的取值范围是故答案为【点睛】解答此类问题时要注意两点:一是根据函数在上单调递增得到在定义域的每一个区间上函数都要递增;二是要注意在分界点处的函数值的大小,这一点容易忽视,属于中档题12、充分不必要【解析】解不等式,利用集合的包含关系判断可得出结论.【详解】由得,解得或,因或,因此,“”是“”的充分不必要条件.故答案为:充分不必要.13、,【解析】利用特称命题的否定可得出结论.【详解】命题为特称命题,该命题的否定为“,”.故答案为:,.14、第一或第三象限【解析】将表达式化简,,二者相等,只需满足与同号即可,从而判断角所在的象限.【详解】由,,若,只需满足,即与同号,因此的终边在第一或第三象限.故答案为:第一或第三象限.15、【解析】依据分段函数定义去求的值即可.【详解】由,可得,则由,可得故答案为:16、【解析】根据开偶次方被开方数非负数,结合对数函数的定义域得到不等式组,解出即可.【详解】函数定义域满足:解得所以函数的定义域为故答案为:【点睛】本题考查了求函数的定义域问题,考查对数函数的性质,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)或.【解析】(1)设圆的方程为,根据题意列出方程组,求得的值,即可求解;(2)由圆的弦长公式,求得圆心到直线的距离为,分类直线的斜率不存在和斜率存在两种情况讨论,即可求得直线的方程.【小问1详解】解:圆经过两点,且圆心在直线上,设圆的方程为,可得,解得,所以圆的方程为,即.【小问2详解】解:由圆,可得圆心,半径为,因为直线过点,且被圆截得的弦长为,可得,解得,即圆心到直线的距离为,当直线的斜率不存在时,直线的方程为,此时圆心到直线的距离为,符合题意;当直线的斜率存在时,设直线的斜率为,可得直线的方程为,即由圆心到直线的距离为,解得,所以直线的方程为,即,综上可得,所求直线方程为或.18、(1)(2)【解析】(1)根据命题为真可求不等式的解.(2)根据条件关系可得对应集合的包含关系,从而可求参数的取值范围.【小问1详解】因为p为真命题,故成立,故.【小问2详解】对应的集合为,对应的集合为,因为p为q成立的充分不必要条件,故为的真子集,故(等号不同时取),故.19、(1);(2)当时,选择俱乐部比较合算;当时,两家都一样;当时,选择俱乐部比较合算.【解析】(1)根据已给函数模型求出函数解析式(2)比较和的大小可得(可先解方程,然后确定不同范围内两个函数值的大小【详解】(1)由题意可得当时,,当时,,∴(2)当时,,,∴;当时,;当时,,而,∴;当时,,而,∴.∴当时,选择俱乐部比较合算;当时,两家都一样;当时,选择俱乐部比较合算。【点睛】本题考查函数的应用,考查分段函数模型的应用,属于基础题20、⑴,递增区间,递减区间⑵【解析】整理函数的解析式可得:.(1)由最小正周期公式和函数的解析式求解最小正周期和单调区间即可.⑵结合函数的定义域和三角函数的性质可得函数的值域为.详解】.(1),递增区间满足:,据此可得,单调递增区间为,递减区间满足:,据此可得,单调递减区间为.(2),,,,的值域为.【点睛】本题主要考查三角函数的性质,三角函数最值的求解等知识,意在考查学生的转化能力和计算求解能力.21、(1)在上单调递增,证明见解析;(2)存在,.【解析】(1)令,则,根据已知中函数对任意实数满足,当时,易证得,由增函数的定义,即可得到在上单调递增;(2)由已知中函数对任意实数满足,,利用“凑”的思想,我们可得,结合(1)中函数在上单调递增,我们可将转化为一个关于的一元二次不等式,解不等式即可得到实数的取值范围试题解析:(1)设,∴,又,∴即,∴在上单调递增(2)令,则,∴∴,∴,即,又在上单调递增,∴,即,解得,故存在这样的实数,即考点:1.抽象函数及其应用;2.函数单调性的判断与证明;3.解不等式.【方法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论