




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江金兰教育合作组织2025届高一上数学期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知平面向量,,若,则实数的值为()A.0 B.-3C.1 D.-12.已知函数为R上的偶函数,若对于时,都有,且当时,,则等于()A.1 B.-1C. D.3.下列四个函数中,在其定义域上既是奇函数又是增函数的是()A. B.y=tanxC.y=lnx D.y=x|x|4.如图,在正四棱柱中,,点为棱的中点,过,,三点的平面截正四棱柱所得的截面面积为()A.2 B.C. D.5.体育老师记录了班上10名同学1分钟内的跳绳次数,得到如下数据:88,94,96,98,98,99,100,101,101,116.这组数据的60%分位数是()A.98 B.99C.99.5 D.1006.设函数与的图象的交点为,则所在的区间为()A B.C. D.7.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线后人称之为三角形的欧拉线.已知的顶点,若其欧拉线方程为,则顶点C的坐标是A. B.C. D.8.已知函数(ω>0),对任意x∈R,都有≤,并且在区间上不单调,则ω的最小值是()A.6 B.7C.8 D.99.已知,,,则()A. B.C. D.10.历史上数学计算方面的三大发明是阿拉伯数、十进制和对数,其中对数的发明,大大缩短了计算时间,为人类研究科学和了解自然起了重大作用,对数运算对估算“天文数字”具有独特优势.已知,,则的估算值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数,,则_________;当时,方程的所有实数根的和为__________.12.写出一个同时具有下列性质的函数___________.①是奇函数;②在上为单调递减函数;③.13.请写出一个同时满足下列两个条件的函数:____________.(1),若则(2)14.已知圆,则过点且与圆C相切的直线方程为_____15.已知指数函数的解析式为,则函数的零点为_________16.已知函数在上单调递减,则实数的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,求下列各式的值:(1)(2)18.已知集合,(1)若,求,;(2)若,求实数的取值范围19.为落实国家“精准扶贫”政策,某企业于年在其扶贫基地投入万元研发资金,用于养殖业发展,并计划今后年内在此基础上,每年投入的资金比上一年增长(1)写出第年(年为第一年)该企业投入的资金数(万元)与的函数关系式,并指出函数的定义域;(2)该企业从第几年开始(年为第一年),每年投入的资金数将超过万元?(参考数据:,,,,)20.已知函数为定义在上的奇函数.(1)求的值域;(2)解不等式:21.已知函数是定义在上的增函数,且.(1)求的值;(2)若,解不等式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据,由求解.【详解】因为向量,,且,所以,解得,故选:C.2、A【解析】由已知确定函数的递推式,利用递推式与奇偶性计算即可【详解】当时,,则,所以当时,,所以又是偶函数,,所以故选:A3、D【解析】由奇偶性排除AC,由增减性排除B,D选项符合要求.【详解】,不是奇函数,排除AC;定义域为,而在上为增函数,故在定义域上为增函数的说法是不对的,C错误;满足,且在R上为增函数,故D正确.故选:D4、D【解析】根据题意画出截面,得到截面为菱形,从而可求出截面的面积.【详解】取的中点,的中点,连接,因为该几何体为正四棱柱,∴故四边形为平行四边形,所以,又,∴,同理,且,所以过,,三点平面截正四棱柱所得的截面为菱形,所以该菱形的面积为.故选:D5、C【解析】根据分位数的定义即可求得答案.【详解】这组数据的60%分位数是.6、C【解析】令,则,故的零点在内,因此两函数图象交点在内,故选C.【方法点睛】本题主要考查函数图象的交点与函数零点的关系、零点存在定理的应用,属于中档题.零点存在性定理的条件:(1)利用定理要求函数在区间上是连续不断的曲线;(2)要求;(3)要想判断零点个数还必须结合函数的图象与性质(如单调性、奇偶性).7、A【解析】设C的坐标,由重心坐标公式求重心,代入欧拉线得方程,求出AB的垂直平分线,联立欧拉线方程得三角形外心,外心到三角形两顶点距离相等可得另一方程,两方程联立求得C点的坐标.【详解】设C(m,n),由重心坐标公式得重心为,代入欧拉线方程得:①AB的中点为,,所以AB的中垂线方程为联立,解得所以三角形ABC的外心为,则,化简得:②联立①②得:或,当时,BC重合,舍去,所以顶点C的坐标是故选A.【点睛】本题主要考查了直线方程的各种形式,重心坐标公式,属于中档题.8、B【解析】根据,得为函数的最大值,建立方程求出的值,利用函数的单调性进行判断即可【详解】解:对任意,都有,为函数的最大值,则,,得,,在区间,上不单调,,即,即,得,则当时,最小.故选:B.9、B【解析】分析】由指数函数和对数函数单调性,结合临界值可确定大小关系.【详解】,.故选:B.10、C【解析】令,化为指数式即可得出.【详解】令,则,∴,即的估算值为.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、①.0②.4【解析】直接计算,可以判断的图象和的图象都关于点中心对称,所以所以两个函数图象的交点都关于点对称,数形结合即可求解.【详解】因为,所以,分别作出函数与的图象,图象的对称中心为,令,可得,当时,,所以的对称中心为,所以两个函数图象的交点都关于点对称,当时,两个函数图象有个交点,设个交点的横坐标分别为,,,,且,则,,所以,所以方程的所有实数根的和为,故答案为:,【点睛】关键点点睛:本题的关键点是判断出的图象和的图象都关于点中心对称,作出函数图象可知两个函数图象有个交点,设个交点的横坐标分别为,,,,且,则和关于中心对称,和关于中心对称,所以,,即可求解.12、(答案不唯一,符合条件即可)【解析】根据三个性质结合图象可写出一个符合条件的函数解析式【详解】是奇函数,指数函数与对数函数不具有奇偶性,幂函数具有奇偶性,又在上为单调递减函数,同时,故可选,且为奇数,故答案为:13、,答案不唯一【解析】由条件(1),若则.可知函数为R上增函数;由条件(2).可知函数可能为指数型函数.【详解】令,则为R上增函数,满足条件(1).又,故即成立.故答案为:,(,等均满足题意)14、【解析】先判断点在圆上,再根据过圆上的点的切线方程的方法求出切线方程.【详解】由,则点在圆上,,所以切线斜率为,因此切线方程,整理得.故答案为:【点睛】本题考查了过圆上的点的求圆的切线方程,属于容易题.15、1【解析】解方程可得【详解】由得,故答案为:116、【解析】根据指数函数与二次函数的单调性,以及复合函数的单调性的判定方法,求得在上单调递增,在区间上单调递减,再结合题意,即可求解.【详解】令,可得抛物线的开口向上,且对称轴为,所以函数在上单调递减,在区间上单调递增,又由函数,根据复合函数的单调性的判定方法,可得函数在上单调递增,在区间上单调递减,因为函数在上单调递减,则,可得实数的取值范围是.故答案:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1).(2)【解析】(1)利用二倍角公式和诱导公式直接求解;(2)判断出,根据,求出的值.【小问1详解】因为,所以.【小问2详解】.因为,所以,所以,所以,所以,所以18、(1),(2)【解析】(1)根据集合的基本运算即可求解(2)根据A∩B=B,得到B⊆A,再建立条件关系即可求实数a的取值范围【小问1详解】若a=2,A={x|0<x<2},∴={x|x≤0或x≥2},∵B={x|1<x<3},∴A∪B={x|0<x<3},∴={x|2≤x<3}【小问2详解】∵A∩B=B,∴B⊆A,∴a≥3∴实数a的取值范围为[3,+∞)19、(1),其定义域为(2)第年【解析】(1)由题设,应用指数函数模型,写出前2年的研发资金,然后进一部确定函数解析式及定义域;(2)由(1)得,然后利用对数运算求解集.【小问1详解】第一年投入的资金数为万元,第二年投入的资金数为万元,第x年(年为第一年)该企业投入的资金数(万元)与的函数关系式为,其定义域为【小问2详解】由(1)得,,即,因为,所以即该企业从第年,就是从年开始,每年投入的资金数将超过万元20、(1)(2)【解析】(1)根据函数的奇偶性可得,进而可得函数的单调性及值域;(2)由(1)可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地铁施工危大工程安全管理措施
- 总经理年度资本运作总结及计划
- 通信工程总分包合同2篇
- 2025年传真交易基金合同5篇
- 江苏省泰兴市分界镇初级中学2026届物理八年级第一学期期末质量检测模拟试题含解析
- 2026届浙江省绍兴市越城区五校联考物理八上期末复习检测试题含解析
- 2026届福建省莆田市砺成中学物理八上期末学业水平测试模拟试题含解析
- 河北省沧州市东光县2026届物理八上期末监测模拟试题含解析
- 2026届内蒙古海拉尔区八年级物理第一学期期末联考模拟试题含解析
- 智能穿戴设备消费热点2025年市场潜力评估方案
- 老旧小区改造工程安全生产和文明施工措施
- 2024-2025学年陕西省西安市高新一中高一(上)第一次月考数学试卷(含答案)
- (完整版)新概念英语第一册单词表(打印版)
- 新能源发电技术 课件 第一章-新能源发电概述
- 《智能网联汽车运行与维护》中职技工全套教学课件
- 《遥感原理与应用》全册配套完整课件
- 麻醉科医师晋升副主任医师病例分析专题报告三篇
- 智能云服务交付工程师认证考试题库(网大版)-中(多选题)
- 中医医疗技术手册2013普及版
- 古仁人之心作文共九篇
- 供应室医疗废物的分类和处理
评论
0/150
提交评论