




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省厦门市2025届高二上数学期末学业质量监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若数列的前项和,则此数列是()A.等差数列 B.等比数列C.等差数列或等比数列 D.以上说法均不对2.已知,则下列不等式一定成立的是()A B.C. D.3.设圆:和圆:交于A,B两点,则线段AB所在直线的方程为()A. B.C. D.4.已知双曲线上的点到的距离为15,则点到点的距离为()A.7 B.23C.5或25 D.7或235.已知定义在R上的函数满足,且当时,,则下列结论中正确的是()A. B.C. D.6.若将一个椭圆绕其中心旋转90°,所得椭圆短轴两顶点恰好是旋转前椭圆的两焦点,这样的椭圆称为“对偶椭圆”,下列椭圆中是“对偶椭圆”的是()A. B.C. D.7.命题“∀x∈R,|x|+x2≥0”的否定是()A.∀x∈R,|x|+x2<0 B.∀x∈R,|x|+x2≤0C.∃x0∈R,|x0|+<0 D.∃x0∈R,|x0|+≥08.设数列的前项和为,数列是公比为2的等比数列,且,则()A.255 B.257C.127 D.1299.已知抛物线的焦点坐标是,则抛物线的标准方程为A. B.C. D.10.已知,则()A. B.1C. D.11.设抛物线的焦点为F,过点F且垂直于x轴的直线与抛物线C交于A,B两点,若,则()A1 B.2C.4 D.812.某班进行了一次数学测试,全班学生的成绩都落在区间内,其成绩的频率分布直方图如图所示,若该班学生这次数学测试成绩的中位数的估计值为,则的值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.从10名大学毕业生中选3个人担任村主任助理,则甲、乙至少有1人入选,而丙没有入选不同选法的种数为___________.14.若直线与曲线没有公共点,则实数的取值范围是____________15.已知正四面体ABCD中,E,F分别是线段BC,AD的中点,点G是线段CD上靠近D的四等分点,则直线EF与AG所成角的余弦值为______16.机动车驾驶考试是为了获得机动车驾驶证的考试,采用全国统一的考试科目内容及合格标准,包括科目一理论考试、科目二场地驾驶技能考试、科目三道路驾驶技能考试和科目四安全文明常识考试共四项考试,考生应依次参加四项考试,前一项考试合格后才能报名参加后一项考试,考试不合格则需另行交费预约再次补考.据公安部门通报,佛山市四项考试的合格率依次为,,,,且各项考试是否通过互不影响,则一位佛山公民通过驾考四项考试至多需要补考一次的概率为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)求函数单调区间;(2)函数在区间上的最小值小于零,求a的取值范围18.(12分)已知直线l经过两条直线2x﹣y﹣3=0和4x﹣3y﹣5=0的交点,且与直线x+y﹣2=0垂直(1)求直线l的方程;(2)若圆C过点(1,0),且圆心在x轴的正半轴上,直线l被该圆所截得的弦长为,求圆C的标准方程19.(12分)如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,M、N分别是AB、PC的中点(1)求证:平面MND⊥平面PCD;(2)求点P到平面MND的距离20.(12分)已知函数(1)讨论的单调性;(2)当时,证明21.(12分)某市对新形势下的中考改革工作进行了全面的部署安排.中考录取科目设置分为固定赋分科目和非固定赋分科目,固定赋分科目(语文、数学、英语、物理、体育与健康)按卷面分计算;非固定赋分科目(化学、生物、道德与法治、历史、地理)按学生在该学科中的排名进行等级赋分,即根据改革方案,将每门等级考试科目中考生的原始成绩从高到低分为A,,,,,,,共个等级.参照正态分布原则,确定各等级人数所占比例分别为,,,,,,,.等级考试科目成绩计入考生总成绩时,将A至等级内的考生原始成绩,依照等比例转换法则,分别转换到,,,,,,,八个分数区间,得到考生的等级成绩.该市学生的中考化学原始成绩制成频率分布直方图如图所示:(1)求图中的值;(2)估计该市学生中考化学原始成绩不少于多少分才能达到等级及以上(含等级)?(3)由于中考改革后学生各科原始成绩不再返回学校,只告知各校参考学生的各科平均成绩及方差.已知某校初三共有名学生参加中考,为了估计该校学生的化学原始成绩达到等级及以上(含等级)的人数,将该校学生的化学原始成绩看作服从正态分布,并用这名学生的化学平均成绩作为的估计值,用这名学生化学成绩的方差作为的估计值,计算人数(结果保留整数)附:,,.22.(10分)如图,四棱锥中,,,,平面,点F在线段上运动.(1)若平面,请确定点F的位置并说明理由;(2)若点F满足,求平面与平面的夹角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用数列通项与前n项和的关系和等差数列及等比数列的定义判断.【详解】当时,,当时,,当时,,所以是等差数列;当时,为非等差数列,非等比数列’当时,,所以是等比数列,故选:D2、B【解析】运用不等式的性质及举反例的方法可求解.【详解】对于A,如,满足条件,但不成立,故A不正确;对于B,因为,所以,所以,故B正确;对于C,因为,所以,所以不成立,故C不正确;对于D,因为,所以,所以,故D不正确.故选:B3、A【解析】将两圆的方程相减,即可求两圆相交弦所在直线的方程.【详解】设,因为圆:①和圆:②交于A,B两点所以由①-②得:,即,故坐标满足方程,又过AB的直线唯一确定,即直线的方程为.故选:A4、D【解析】根据双曲线的定义知,,即可求解.【详解】由题意,双曲线,可得焦点坐标,根据双曲线的定义知,,而,所以或故选:D【点睛】本题主要考查了双曲线的定义及其应用,其中解答中熟记双曲线的定义,列出方程是解答的关键,着重考查推理与运算能力,属于基础题.5、B【解析】由可得,利用导数判断函数在上的单调性,由此比较函数值的大小确定正确选项.【详解】∵∴,当时,,∴,故∴在内单调递增,又,∴,所以故选:B6、A【解析】由题意可得,所给的椭圆中的,的值求出的值,进而判断所给命题的真假【详解】解:因为椭圆短的轴两顶点恰好是旋转前椭圆的两焦点,即,即,中,,,所以,故,所以正确;中,,,所以,所以不正确;中,,,所以,所以不正确;中,,,所以,所以不正确;故选:7、C【解析】利用全称命题的否定可得出结论.【详解】由全称命题的否定可知,命题“,”的否定是“,”.故选:C.8、C【解析】由题设可得,再由即可求值.【详解】由数列是公比为2的等比数列,且,∴,即,∴.故选:C.9、D【解析】根据抛物线的焦点坐标得到2p=4,进而得到方程.【详解】抛物线的焦点坐标是,即p=2,2p=4,故得到方程为.故答案为D.【点睛】这个题目考查了抛物线的标准方程的求法,题目较为简单.10、B【解析】先根据共轭复数的定义可得,再根据复数的运算法则即可求出【详解】因为,所以故选:B11、C【解析】根据焦点弦的性质即可求出【详解】依题可知,,所以故选:C12、A【解析】根据已知条件可得出关于、的方程组,解出这两个量的值,即可求得结果.【详解】由题意有,得,又由,得,解得,,有故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、49【解析】丙没有入选,相当于从9个人中选3人,分为两种情况:甲乙两人只有一人入选;甲乙两人都入选,分别求出每种情况的选法数,再利用分类加法计数原理即可得解.【详解】丙没有入选,把丙去掉,相当于从9个人中选3人,甲、乙至少有1人入选,分为两种情况:甲乙两人只有一人入选;甲乙两人都入选.甲乙两人只有一人入选,选法有种;甲乙两人都入选,选法有种.所以,满足题意的选法共有种.故答案为:49.【点睛】本题考查组合的应用,其中涉及到分类加法计数原理,属于中档题.一些常见类型的排列组合问题的解法:(1)特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;(2)分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏;(3)间接法(排除法),从总体中排除不符合条件的方法数,这是一种间接解题的方法;(4)捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列;(5)插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空;(6)去序法或倍缩法;(7)插板法:个相同元素,分成组,每组至少一个的分组问题.把个元素排成一排,从个空中选个空,各插一个隔板,有;(8)分组、分配法:有等分、不等分、部分等分之别.14、;【解析】可化简曲线的方程为,作出其图形,数形结合求临界值即可求解.【详解】由可得,所以曲线为以为圆心,的下半圆,作出图形如图:当直线过点时,,可得,当直线与半圆相切时,则圆心到直线的距离,可得:或(舍),若直线与曲线没有公共点,由图知:或,所以实数的取值范围是:,故答案为:15、【解析】建立空间直角坐标系,令正四面体的棱长为,即可求出点的坐标,从而求出异面直线所成角的余弦值;【详解】解:如图建立空间直角坐标系,令正四面体的棱长为,则,所以,所以,所以,,,,,设,因为,所以,所以,所以,,设直线与所成角为,则故答案为:16、【解析】至多需要补考一次,分5种情况分别计算后再求和即可.【详解】不需要补考就通过的概率为;仅补考科目一就通过的概率为;仅补考科目二就通过的概率为;仅补考科目三就通过的概率为;仅补考科目三就通过的概率为,一位佛山公民通过驾考四项考试至多需要补考一次的概率为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析;(2).【解析】(1)对求导并求定义域,讨论、分别判断的符号,进而确定单调区间.(2)由题设,结合(1)所得的单调性,讨论、、分别确定在给定区间上的最小值,根据最小值小于零求参数a的范围.【小问1详解】由题设,且定义域为,当,即时,在上,即在上递增;当,即时,在上,在上,所以在上递减,在上递增;【小问2详解】由(1)知:若,即时,则在上递增,故,可得;若,即时,则在上递减,在上递增,故,不合题设;若,即时,则在上递减,故,得;综上,a的取值范围.18、(1)(2)【解析】(1)先求得直线和直线的交点坐标,再用点斜式求得直线的方程.(2)设圆的标准方程为,根据已知条件列方程组,求得,由此求得圆的标准方程.【小问1详解】.直线的斜率为,所以直线的斜率为,所以直线的方程为.【小问2详解】设圆的标准方程为,则,所以圆的标准方程为.19、(1)见解析;(2)【解析】(1)作出如图所示空间直角坐标系,根据题中数据可得、、的坐标,利用垂直向量数量积为零的方法算出平面、平面的法向量分别为,,和,1,,算出,可得,从而得出平面平面;(2)由(1)中求出的平面法向量,,与向量,2,,利用点到平面的距离公式加以计算即可得到点到平面的距离【详解】(1)证明:平面,,、、两两互相垂直,如图所示,分别以、、所在直线为轴、轴和轴建立空间直角坐标系,则,0,,,0,,,2,,,2,,,0,,,0,,,1,,,1,,,1,,,2,设,,是平面的一个法向量,可得,取,得,,,,是平面的一个法向量,同理可得,1,是平面的一个法向量,,,即平面的法向量与平面的法向量互相垂直,可得平面平面;(2)解:由(1)得,,是平面的一个法向量,,2,,得,点到平面的距离20、(1)答案见解析(2)证明见解析【解析】(1)求导得,进而分和两种情况讨论求解即可;(2)根据题意证明,进而令,再结合(1)得,研究函数的性质得,进而得时,,即不等式成立.【小问1详解】解:函数的定义域为,,∴当时,在上恒成立,故函数在区间上单调递增;当时,由得,由得,即函数在区间上单调递增,在上单调递减;综上,当时,在区间上单调递增;当时,在区间上单调递增,在上单调递减;【小问2详解】证明:因为时,证明,只需证明,由(1)知,当时,函数在区间上单调递增,在上单调递减;所以.令,则,所以当时,,函数单调递减;当时,,函数单调递增,所以.所以时,,所以当时,21、(1)(2)85(3)23【解析】(1)根据所有矩形面积之和等于1可得;(2)先根据矩形面积之和判断达到等级的最低分数为x所在区间,然后根据矩形面积之和等于0.9可得;(3)由题知,所以由可得.【小问1详解】由得【小问2详解】由题意可知,要使等级达到等级及以上,则成绩需超过的学生.因为,记达到等级的最低分数为x,则,则由,解得所以该市学生中考化学原始成绩不少于85分才能达到等级及以上.【小问3详解】由题知,因为所以故该校学生的化学原始成绩达到等级及以上的人数大约为人.22、(1)F为BD的中点,证明见解析;(2).【解析】(1)由为的中点,取的中点,连接易证四边形为平行四边形,得到,再利用线面平行的判定定理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 睡眠眼罩商业计划书
- 物联网运营工作计划范文
- 专注智能物流 喜迎“机器人革命”-专访广东嘉腾机器人自动化有限公
- 2025秋五年级上册语文(统编版)-【20 精彩极了和糟糕透了】作业课件
- 2025秋五年级上册语文(统编版)-【7 什么比猎豹的速度更快】作业课件
- 人造肉项目立项报告
- 人造肉项目企业运营管理(模板)
- 中国汽车摩擦材料项目投资计划书
- 户外拓客活动方案
- 网络货运对铁路物流企业的影响分析
- 苏州苏州工业园区部分单位招聘51人笔试历年参考题库附带答案详解
- 卫生院厉行节约、降低运营成本实施方案
- 2025年江苏武进经济发展集团招聘笔试参考题库含答案解析
- GB/T 3953-2024电工圆铜线
- 直螺纹套筒进场检查记录
- Q∕GDW 12177-2021 供电服务记录仪技术规范
- 形式发票--INVOICE(跨境-)
- 某路延伸段新建市政工程施工设计方案
- 110kV变电站操作规程
- 温州市住房公积金补贴提取申请表
- 梁氏族谱祖系
评论
0/150
提交评论