版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省富阳市第二中学2025届数学高二上期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.三等分角是“古希腊三大几何问题”之一,数学家帕普斯巧妙地利用圆弧和双曲线解决了这个问题.如图,在圆D中,为其一条弦,,C,O是弦的两个三等分点,以A为左焦点,B,C为顶点作双曲线T.设双曲线T与弧的交点为E,则.若T的方程为,则圆D的半径为()A. B.1C.2 D.2.为了调查全国人口的寿命,抽查了11个省(市)的2500名城镇居民,这2500名城镇居民的寿命的全体是()A.总体 B.个体C.样本 D.样本容量3.在等差数列中,,且构成等比数列,则公差等于()A.0 B.3C. D.0或34.过两点、的直线的倾斜角为,则的值为()A.或 B.C. D.5.如图,在直三棱柱中,且,点E为中点.若平面过点E,且平面与直线AB所成角和平面与平面所成锐二面角的大小均为30°,则这样的平面有()A.1个 B.2个C.3个 D.4个6.在等比数列{an}中,a3,a15是方程x2+6x+2=0的根,则的值为()A. B.C. D.或7.命题“,”否定是()A., B.,C., D.,8.已知向量,,则等于()A. B.C. D.9.下列函数是偶函数且在上是减函数的是A. B.C. D.10.已知点是椭圆上的一点,点,则的最小值为A. B.C. D.11.若,,则有()A. B.C. D.12.设、是向量,命题“若,则”的逆否命题是()A.若,则 B.若,则C.若,则 D.若,则二、填空题:本题共4小题,每小题5分,共20分。13.若在上是减函数,则实数a的取值范围是_________.14.若向量,且夹角的余弦值为________15.已知等差数列的前项和为,若,,则数列的前2021项和为___________.16.若函数在区间上的最大值是,则__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的顶点在原点,焦点在轴上,且抛物线上有一点到焦点的距离为3,直线与抛物线交于,两点,为坐标原点(1)求抛物线的方程;(2)求的面积.18.(12分)已知,是函数的两个极值点.(1)求的解析式;(2)记,,若函数有三个零点,求的取值范围.19.(12分)已知定点,动点满足,设点的轨迹为.(1)求轨迹的方程;(2)若点分别是圆和轨迹上的点,求两点间的最大距离.20.(12分)已知圆C的圆心在坐标原点,且过点M()(1)求圆C的方程;(2)已知点P是圆C上的动点,试求点P到直线的距离的最小值;21.(12分)已知双曲线C:的离心率为,过点作垂直于x轴的直线截双曲线C所得弦长为(1)求双曲线C的方程;(2)直线()与该双曲线C交于不同的两点A,B,且A,B两点都在以点为圆心的同一圆上,求m的取值范围22.(10分)已知两条直线,.设为实数,分别根据下列条件求的值.(1);(2)直线在轴、轴上截距之和等于.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由题设写出双曲线的方程,对比系数,求出即可获解【详解】由题知所以双曲线的方程为又由题设的方程为,所以,即设AB的中点为,则由.所以,即圆的半径为2故选:C2、C【解析】由样本的概念即知.【详解】由题意可知,这2500名城镇居民的寿命的全体是样本.3、D【解析】根据,且构成等比数列,利用“”求解.【详解】设等差数列的公差为d,因为,且构成等比数列,所以,解得,故选:D4、D【解析】利用斜率公式可得出关于实数的等式与不等式,由此可解得实数的值.详解】由斜率公式可得,即,解得.故选:D.5、B【解析】构造出长方体,取中点连接然后利用临界位置分情况讨论即可.【详解】如图,构造出长方体,取中点,连接则所有过点与成角的平面,均与以为轴的圆锥相切,过点绕且与成角,当与水平面垂直且在面的左侧(在长方体的外面)时,与面所成角为75°(与面成45°,与成30°),过点绕旋转,转一周,90°显然最大,到了另一个边界(在面与之间)为15度,即与面所成角从75°→90°→15°→90°→75°变化,此过程中,有两次角为30
,综上,这样的平面α有2个,故选:B.6、B【解析】由韦达定理得a3a15=2,由等比数列通项公式性质得:a92=a3a15=a2a16=2,由此求出答案【详解】解:∵在等比数列{an}中,a3,a15是方程x2-6x+2=0的根,∴a3a15=2>0,a3+a15=-6<0∴a2a16=a3a15=2,a92=a3a15=2,∴a9=,∴,故选B【点睛】本题考查等比数列中两项积与另一项的比值的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用7、D【解析】根据含有量词的命题的否定即可得出结论.【详解】命题为全称命题,则命题的否定为:,.故选:D.8、C【解析】根据题意,结合空间向量的坐标运算,即可求解.【详解】由,,得,因此.故选:C.9、C【解析】根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案【详解】根据题意,依次分析选项:对于A,为一次函数,不是偶函数,不符合题意;对于B,,,为奇函数,不是偶函数,不符合题意;对于C,,为二次函数,是偶函数且在上是减函数,符合题意;对于D,,,为奇函数,不是偶函数,不符合题意;故选C【点睛】本题考查函数的奇偶性与单调性的判定,关键是掌握常见函数的奇偶性与单调性,属于基础题10、D【解析】设,则,.所以当时,的最小值为.故选D.11、D【解析】对待比较的代数式进行作差,利用不等式基本性质,即可判断大小.【详解】因为,又,,故,则,即;因为,又,,故,则;综上所述:.故选:D.12、C【解析】利用原命题与逆否命题之间的关系可得结论.【详解】由原命题与逆否命题之间的关系可知,命题“若,则”的逆否命题是“若,则”.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据导数的性质,结合常变量分离法进行求解即可.【详解】,因为在上是减函数,所以在上恒成立,即,当时,的最小值为,所以,故答案为:14、【解析】根据求解即可.【详解】,故答案为:【点睛】本题主要考查了求空间中两个向量的夹角,属于基础题.15、【解析】根据题意求出,代入中,再利用裂项相消即可求出答案.【详解】由是等差数列且,可知:,故.,数列的前2021项和为.故答案为:.16、0【解析】由函数,又由,则,根据二次函数的性质,即可求解函数的最大值,得到答案.【详解】由函数,因为,所以,当时,则,所以.【点睛】本题主要考查了余弦函数的性质,以及二次函数的图象与性质,其中解答中根据余弦函数,转化为关于的二次函数,利用二次函数的图象与性质是解答的关键,着重考查了转化思想,以及推理与计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)由题意可设抛物线的方程为y2=2px(p>0),运用抛物线的定义,可得23,解得p=2,进而得到抛物线的方程;(2)由题意,直线AB方程为y=x﹣1,与y2=4x消去y得:x2﹣6x+1=0.再用一元二次方程根与系数的关系和弦长公式,算出|AB|;利用点到直线的距离公式算出点O到直线AB的距离,即可求出△AOB的面积【详解】(1)抛物线C的顶点在原点,焦点在x轴上,且过一点P(2,m),可设抛物线的方程为y2=2px(p>0),P(2,m)到焦点的距离为3,即有P到准线的距离为6,即23,解得p=2,即抛物线的标准方程为y2=4x;(2)联立方程化简,得x2﹣6x+1=0设交点为A(x1,y1),B(x2,y2)∴x1+x2=6,x1x2=1可得|AB||x1﹣x2|=8点O到直线l的距离d,所以△AOB的面积为S|AB|•d82【点睛】本题考查抛物线的方程的求法及抛物线定义的应用,考查待定系数法的运用,考查求焦点弦AB与原点构成的△AOB面积,属于中档题18、(1);(2)【解析】(1)根据极值点的定义,可知方程的两个解即为,,代入即得结果;(2)根据题意,将方程转化为,则函数与直线在区间,上有三个交点,进而求解的取值范围【详解】解:(1)因为,所以根据极值点定义,方程的两个根即为,,,代入,,可得,解之可得,,故有;(2)根据题意,,,,根据题意,可得方程在区间,内有三个实数根,即函数与直线在区间,内有三个交点,又因为,则令,解得;令,解得或,所以函数在,上单调递减,在上单调递增;又因为,,,,函数图象如下所示:若使函数与直线有三个交点,则需使,即19、(1)(2)【解析】(1)设动点,根据条件列出方程,化简求解即可;(2)设,求出圆心到轨迹上点的距离,配方求最值即可得解.【小问1详解】设动点,则,,,又,∴,化简得,即,∴动点的轨迹E的方程为.【小问2详解】设,圆心到轨迹E上的点的距离∴当时,,∴.20、(1)(2)【解析】(1)由圆C的圆心在坐标原点,且过点,求得圆的半径,利用圆的标准方程,即可求解;(2)由点到直线的距离公式,求得圆心到直线l的距离为,进而得到点P到直线的距离的最小值为,得出答案.【详解】(1)由题意,圆C的圆心在坐标原点,且过点,所以圆C的半径为,所以圆C的方程为.(2)由题意,圆心到直线l的距离为,所以P到直线的距离的最小值为.【点睛】本题主要考查了圆标准方程的求解,以及直线与圆的位置关系的应用,其中解答中熟练应用直线与圆的位置关系合理转化是解答的关键,着重考查了转化思想,以及推理与计算能力,属于基础题.21、(1)(2)或【解析】(1)利用双曲线离心率、点在双曲线上及得到关于、、的方程组,进而求出双曲线的标准方程;(2)联立直线和双曲线的方程,得到关于的一元二次方程,利用直线和双曲线的位置关系、根与系数的关系得到两个交点坐标间的关系,利用A,B两点都在以点为圆心的同一圆上得到,再利用向量的数量积为0得到、的关系,进而消去得到的不等式进行求解.【小问1详解】解:因为过点作垂直于x轴的直线截双曲线C所得弦长为,所以点在双曲线上,由题意,得,解得,,,即双曲线的标准方程为.【小问2详解】解:联立,得,因为直线与该双曲线C交于不同的两点,所以且,即且,设,,的中点,则,,因为A,B两点都在以点为圆心的同一圆上,所以,即,因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中职医学检验技术(检验实操)试题及答案
- 2025年中职机电一体化技术(设备故障诊断)试题及答案
- 2025年大学(艺术设计学)设计心理学期末试题及答案
- 2025年大学水污染防治管理应用(应用技术)试题及答案
- 2025年中职(印刷技术)平版印刷操作阶段测试试题及答案
- 2025年中职(文秘)文书写作试题及解析
- 2025年大学一年级(建筑学)建筑设计阶段测试题及答案
- 2025年高职食品质量与安全(食品质量安全)试题及答案
- 2025年高职心理健康教育(心理健康辅导)试题及答案
- 2025年高职(中药学)中药鉴定实验综合测试题及答案
- 钢结构施工优化策略研究
- 本科院校实验员面试电子版题
- 雅思2025年阅读真题解析试卷(含答案)
- 餐饮员工服务沟通技巧指导书
- 黑色三分钟1-12部事故类型及直接原因分析(新)
- 化学史简明教程 课件 第5-7章 有机化学的兴起 -现代化学的发展趋势
- 2025年高考真题-化学(四川卷) 含答案
- 学堂在线 雨课堂 学堂云 大数据机器学习 章节测试答案
- 2025年中国奢侈女鞋行业市场全景分析及前景机遇研判报告
- 七年级英语上册新教材解读课件(译林版2024)
- 煤矿机电设备检修标准及安全技术措施
评论
0/150
提交评论