2025届新疆库车县乌尊镇中学数学高二上期末教学质量检测试题含解析_第1页
2025届新疆库车县乌尊镇中学数学高二上期末教学质量检测试题含解析_第2页
2025届新疆库车县乌尊镇中学数学高二上期末教学质量检测试题含解析_第3页
2025届新疆库车县乌尊镇中学数学高二上期末教学质量检测试题含解析_第4页
2025届新疆库车县乌尊镇中学数学高二上期末教学质量检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届新疆库车县乌尊镇中学数学高二上期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列满足,,.设,若对于,都有恒成立,则最大值为A.3 B.4C.7 D.92.若函数有两个零点,则实数a的取值范围是()A. B.C. D.3.已知直线是圆的对称轴,过点A作圆C的一条切线,切点为B,则|AB|=()A.1 B.2C.4 D.84.抛物线的焦点为,准线为,焦点在准线上的射影为点,过任作一条直线交抛物线于两点,则为()A.锐角 B.直角C.钝角 D.锐角或直角5.若数列满足,,则数列的通项公式为()A. B.C. D.6.命题“若,则”的逆否命题是()A.若,则 B.若,则C.若,则 D.若,则7.如果椭圆上一点到焦点的距离等于6,则线段的中点到坐标原点的距离等于()A.7 B.10C.12 D.148.已知向量,则“”是“”的()A充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件9.已知双曲线的右焦点为,渐近线为,,过的直线与垂直,且交于点,交于点,若,则双曲线的离心率为()A. B.C.2 D.10.设双曲线的实轴长与焦距分别为2,4,则双曲线C的渐近线方程为()A. B.C. D.11.函数y=的最大值为Ae-1 B.eC.e2 D.12.如图,在四面体中,,,,分别为,,,的中点,则化简的结果为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图是用斜二测画法画出水平放置的正三角形ABC的直观图,其中,则三角形的面积为______.14.已知数列满足,将数列按如下方式排列成新数列:,,,,,,,,,…,,….则新数列的前70项和为______15.已知,分别是双曲线的左、右焦点,P是其一条渐近线上的一点,且以为直径的圆经过点P,则的面积为___________.16.已知函数,则的值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆的圆心在直线上,与轴正半轴相切,且被直线:截得的弦长为.(1)求圆的方程;(2)设点在圆上运动,点,且点满足,记点的轨迹为.①求的方程,并说明是什么图形;②试探究:在直线上是否存在定点(异于原点),使得对于上任意一点,都有为一常数,若存在,求出所有满足条件的点的坐标,若不存在,说明理由.18.(12分)已知数列的前项和为,并且满足(1)求数列的通项公式;(2)若,数列的前项和为,求证:19.(12分)如图,在四棱锥中,底面ABCD为直角梯形,,,底面ABCD,E为BP的中点,,(1)证明:平面PAD;(2)求平面EAC与平面PAC夹角的余弦值20.(12分)在平面直角坐标系xOy中,椭圆C的左,右焦点分别为F1(﹣,0),F2(,0),且椭圆C过点(﹣).(1)求椭圆C的标准方程;(2)设过(0,﹣2)的直线l与椭圆C交于M,N两点,O为坐标原点,若,求直线l的方程.21.(12分)某消费者协会在3月15号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识,组织方从参加活动的群众中随机抽取120名群众,按年龄将这120名群众分成5组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.(1)求图中m的值;(2)估算这120名群众的年龄的中位数(结果精确到0.1);(3)已知第1组群众中男性有2人,组织方要从第1组中随机抽取2名群众组成维权志愿者服务队,求恰有一名女性的概率.22.(10分)在平面直角坐标系中,为坐标原点,曲线上点都在轴及其右侧,且曲线上的任一点到轴的距离比它到圆的圆心的距离小1(1)求曲线的方程;(2)已知过点的直线交曲线于点,若,求面积

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】整理数列的通项公式有:,结合可得数列是首项为,公比为的等比数列,则,,原问题即:恒成立,当时,,即>3,综上可得:的最大值为3.本题选择A选项点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项2、C【解析】函数有两个零点等价于方程有两个根,等价于与图象有两个交点,通过导数分析的单调性,根据图象即可求出求出的范围.【详解】函数有两个零点,方程有两个根,,分离参数得,与图象有两个交点,令,,令,解得当时,,在单调递增,当时,,在单调递减,且在处取得极大值及最大值,可以画出函数的大致图象如下:观察图象可以得出.故选:C.【点睛】本题主要考查函数零点的应用,构造函数求函数的导数,利用函数极值和导数之间的关系是解决本题的关键.3、C【解析】首先将圆心坐标代入直线方程求出参数a,求得点A的坐标,由切线与圆的位置关系构造直角三角形从而求得.【详解】圆即,圆心为,半径为r=3,由题意可知过圆的圆心,则,解得,点A坐标为,,切点为B则,故选:C【点睛】本题考查直线与圆的位置关系,属于基础题.4、D【解析】设出直线方程,联立抛物线方程,利用韦达定理,求得,根据其结果即可判断和选择.【详解】为说明问题,不妨设抛物线方程,则,直线斜率显然不为零,故可设直线方程为,联立,可得,设坐标为,则,故,当时,,;当时,,;故为锐角或直角.故选:D.5、B【解析】根据等差数列的定义和通项公式直接得出结果.【详解】因为,所以数列是等差数列,公差为1,所以.故选:B6、C【解析】根据逆否命题的定义写出逆否命题即得【详解】解:以否定的结论作条件、否定的条件作结论得出的命题为原命题的逆否命题,即“若,则”的逆否命题是“若,则”故选:C7、A【解析】可由椭圆方程先求出,在利用椭圆的定义求出,利用已知求解出,再取的中点,连接,利用中位线,即可求解出线段的中点到坐标原点的距离.【详解】因为椭圆,,所以,结合得,,取的中点,连接,所以为的中位线,所以.故选:A.8、A【解析】根据得出,根据充分必要条件的定义可判断.【详解】解:∵,向量,,∴,即,根据充分必要条件的定义可判断:“”是“”的充分不必要条件,故选:A.9、C【解析】由题设易知是的中垂线,进而可得,结合双曲线参数关系及离心率公式求双曲线的离心率即可.【详解】由题意,是的中垂线,故,由对称性得,则,故,∴.故选:C.10、C【解析】由已知可求出,即可得出渐近线方程.【详解】因为,所以,所以的渐近线方程为.故选:C.11、A【解析】,所以函数在上递增,在上递减,所以函数的最大值为时,y==故选A点睛:研究函数最值主要根据导数研究函数的单调性,找到最值,分式求导公式要记熟12、C【解析】根据向量的加法和数乘的几何意义,即可得到答案;【详解】故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据直观图和平面图的关系可求出,进而利用面积公式可得三角形的面积【详解】由已知可得则故答案为:.14、##2.9375【解析】先根据题干条件得到,再利用错位相减法求前64项和,最后求出前70项和.【详解】①,当时,;当时,②,①-②得:,即又满足,所以由,得令,则,两式相减得,则所以新数列的前70项和为故答案为:15、【解析】先得出渐近线方程和圆的方程,然后解出点P的纵坐标,进而求出面积.【详解】由题意,渐近线方程为:,,圆的方程为:,联立:,所以.故答案为:.16、【解析】先求出的导函数,然后将代入可得答案.【详解】,所以故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)①,圆;②存在,.【解析】(1)设圆心,根据题意,得到半径,根据弦长的几何表示,由题中条件,列出方程求解,得出,从而可得圆心和半径,进而可得出结果;(2)①设,根据向量的坐标表示,由题中条件,得到,代入圆的方程,即可得出结果;②假设存在一点满足(其中为常数),设,根据题意,得到,再由①,得到,两式联立化简整理,得到,推出,求解得出,即可得出结果.【详解】(1)设圆心,则由圆与轴正半轴相切,可得半径.∵圆心到直线的距离,由,解得.故圆心为或,半径等于.∵圆与轴正半轴相切圆心只能为故圆的方程为;(2)①设,则:,,∵点A在圆上运动即:所以点的轨迹方程为,它是一个以为圆心,以为半径的圆;②假设存在一点满足(其中为常数)设,则:整理化简得:,∵在轨迹上,化简得:,所以整理得,解得:;存在满足题目条件.【点睛】本题主要考查求圆的方程,考查圆中的定点问题,涉及圆的弦长公式等,属于常考题型.18、(1);(2)证明见解析.【解析】(1)利用和项可求得的通项公式,注意别漏了说明;(2)先用错位相减法求出数列的前项和,从而可知【详解】(1),①当时,,②由①—②可得:,且数列是首项为1,公差为2的等差数列,即(2)由(1)知数列,,则,①∴,②由①﹣②得,∴,.【点睛】本题主要考查给出的一个关系式求数列的通项公式以及用错位相减法求数列的前n项和.19、(1)证明见解析(2)【解析】(1)通过作辅助线,构造平行四边形,在平面PAD找到线并证明,根据线面平行的判定定理即可证明;(2)建立空间直角坐标系,求出相应点的坐标,进而求得相关的向量坐标,求出平面EAC与平面PAC的法向量,根据向量的夹角公式求得答案.【小问1详解】证明:取PA的中点F,由E为PB的中点,则,,而,,所以且,则四边形CDFE为平行四边形,所以,又平面PAD,平面PAD,所以平面PAD【小问2详解】∵平面ABCD,,∴AP,AB,AD两两垂直,以A为原点,,,向量方向分别为x轴,y轴,z轴建立如图所示空间直角坐标系,各点坐标如下:,,,,,设平面APC的法向量为,由,,有,取,则,,即,设平面EAC的法向量为,由,,有,取,则,,即,所以,由原图可知平面EAC与平面PAC夹角为锐角,所以平面EAC与平面PAC夹角的余弦值为20、(1)(2)或.【解析】(1)设标准方程代入点的坐标,解方程组得解.(2)设直线方程代入椭圆方程消元,韦达定理整体思想,可得直线斜率得解.【小问1详解】因为椭圆C的焦点为,可设椭圆C的方程为,又点在椭圆C上,所以,解得,因此,椭圆C的方程为;【小问2详解】当直线的斜率不存在时,显然不满足题意;当直线的斜率存在时,设直线的方程为,设,,因为,所以,因为,,所以,所以,①联立方程,消去得,则,代入①,得,解得,经检验,此时直线与椭圆相交,所以直线l的方程是或.21、(1)(2)(3)【解析】(1)由频率分布直方图中所有频率和为1求出;(2)求出概率对应的值即为中位数;(3)求出第一组中总人数,得女性人数,然后求得恰有一名女性的方法数和总的方法数后可得概率【小问1详解】解:因为频率分布直方图的小矩形面积和为1,所以,解得,【小问2详解】解:前2组频率和为,前3组频率和为,所以中位数在第3组,设中位数为,则,;【小问3详解】解:第一组总人数为,男性人2人,则女性有4人,不妨记两名男性为,四名女性为,则随机抽取2名群众的可能为,,,共15种方案,其中恰有一名女性的方法数,共8种,所以第1组中随机抽取2名群众组成维权志愿者服务队,求恰有一名女性的概率为22、(1)(2)【解析】(1)由题意直接列或根据抛物线的定义求轨迹方程(2)待定系数法设直线方程,联立直线与抛物线方程,根据抛物线的定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论