专题06 直角三角形中的分类讨论模型(原卷版)_第1页
专题06 直角三角形中的分类讨论模型(原卷版)_第2页
专题06 直角三角形中的分类讨论模型(原卷版)_第3页
专题06 直角三角形中的分类讨论模型(原卷版)_第4页
专题06 直角三角形中的分类讨论模型(原卷版)_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题06直角三角形中的分类讨论模型模型1、直角三角形中的分类讨论模型【知识储备】凡是涉及直角三角形问题,优先考虑直角顶点(或斜边)分类讨论,再利用直角三角形的性质或勾股定理解题即可。1)无图需分类讨论:①已知边长度无法确定是直角边还是斜边时要分类讨论;②已知无法确定是哪个角是直角时要分类讨论(常见与折叠、旋转中出现的直角三角形)。2)“两定一动”直角三角形存在性问题:(常见于与坐标系综合出题,后续会专题进行讲解)即:如图:已知,两点是定点,找一点构成方法:两线一圆具体图解:①当时,过点作的垂线,点在该垂线上(除外)②当时,过点作的垂线,点在该垂线上(除外)。③当时,以为直径作圆,点在该圆上(,除外)。例1.(2023春·广西河池·八年级统考期末)在中,,,当时,是直角三角形.例2.(2023春·河南郑州·八年级校考期中)如图,是的角平分线,是的高,,,点F为边上一点,当为直角三角形时,则的度数为.例3.(2022秋·河南新乡·八年级校考期末)如图,在4×4的正方形网格中有两个格点A,B,连接AB,在网格中再找一个格点C,使得△ABC是等腰直角三角形,则满足条件的格点C的个数是(

)A.1个 B.2个 C.3个 D.4个例4.(2022·江西九江·八年级期末)已知在平面直角坐标系中A(﹣2,0)、B(2,0)、C(0,2).点P在x轴上运动,当点P与点A、B、C三点中任意两点构成直角三角形时,点P的坐标为________.例5.(2022秋·江西吉安·八年级校联考阶段练习)已知Rt△ABC中,AC=4,BC=3,∠ACB=90°,以AC为一边在Rt△ABC外部作等腰直角三角形ACD,则线段BD的长为.例6.(2023春·河南南阳·八年级统考期末)如图,矩形中,,点E为边上的一个动点,与关于直线对称.当为直角三角形时,的长为.

例7.(2023·浙江·八年级专题练习)如图,已知Rt△ABC中,∠ACB=90°,AC=3,BC=4,点P是BC边上的一个动点,点B与B′是关于直线AP的对称点,当△CPB'是直角三角形时,BP的长=.例8.(2023秋·广东八年级课时练习)如图所示,已知,P是射线上一动点,.(1)当是等边三角形时,求的长;(2)当是直角三角形时,求的长.

例9.(2023秋·河北张家口·八年级统考期末)在中,,是边上的动点,过点作交于点,将沿折叠,点的对应点为点.

(1)如图1,若点恰好落在边上,判断的形状,并证明;(2)如图2,若点落在内,且的延长线恰好经过点,,求的度数;(3)若,当是直角三角形时,直接写出的长.例10.(2023秋·四川成都·八年级统考期末)如图1,在平面直角坐标系中,点A的坐标为,点B的坐标为.(1)求直线的表达式;(2)点M是坐标轴上的一点,若以为直角边构造,请求出满足条件的所有点M的坐标;(3)如图2,以A为直角顶点作,射线交x轴的正半轴于点C,射线交y轴的负半轴于点D,当绕点A旋转时,求的值.例11.(2023秋·重庆南岸·八年级校考期末)如图,直线交轴、轴分别于点、,直线与直线交于点,与轴交于点.已知,点的横坐标为.

(1)求直线的解析表达式.(2)若在线段上,四边形的面积为14,求点坐标.(3)若点、分别为直线、上的动点,连结、、,当是以为直角边的等腰直角三角形时,请直接写出所有点的坐标,并把求其中一个点的坐标过程写出来.课后专项训练1.(2023秋·山东枣庄·八年级统考期中)在直角坐标系中,为坐标原点,已知点,在坐标轴上确定点,使得为直角三角形,则符合条件的点的个数共有(

)A.2个 B.3个 C.4个 D.5个2.(2023秋·重庆·八年级课堂例题)已知点A和点,以点A和点为两个顶点作等腰直角三角形,一共可以作出个.3.(2023秋·广东·八年级专题练习)平面直角坐标系中有点A(0,4)、B(3,0),连接AB,以AB为直角边在第一象限内作等腰直角三角形ABC,则点C的坐标为.4.(2023春·江苏南京·八年级校考阶段练习)如图,在中,,,,分别是高和角平分线,点E为边上一个点,当为直角三角形时,则度.5.(2023秋·江苏淮安·八年级统考期中)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,现将BC延长到点D,使△ABD为等腰三角形,则CD的长为.6.(2023春·江苏·八年级期末)在中,,,的角平分线BD交AC于D,E为线段AB上的动点,当是直角三角形时,的度数是.(写出所有的正确结果)7.(2023春·广东八年级课时练习)如图,在△ABC中,∠ACB=90°,AC=6,BC=8,D是斜边AB上一个动点,E是直线BC上的一个动点,将△ABC沿DE折叠,使点B的对应点F落在直线AB上,连接CF,当△CEF是直角三角形时,线段BD的长为.8.(2022春·河南新乡·八年级统考期末)在中,高和所在直线相交于点O,若不是直角三角形,且,则.9.(2023春·广东八年级课时练习)如图,在等边三角形中,,于点,点,分别是,上的动点,沿所在直线折叠,使点落在上的点处,当是直角三角形时,的长为.10.(2022·广东汕头·八年级期末)如图,是边长为的正三角形,动点从向以匀速运动,同时动点从向以匀速运动,当点到达点时,两点停止运动,设点的运动时间为秒,则当__________时,为直角三角形.11.(2022秋·山东济南·八年级统考期中)如图,长方形中,,,点E为射线上一动点(不与D重合),将沿AE折叠得到,连接,若为直角三角形,则12.(2023·河南·郑州市三模)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点P是边AC上一动点,把△ABP沿直线BP折叠,使得点A落在图中点A′处,当△AA′C是直角三角形时,则线段CP的长是_________.13.(2022·辽宁抚顺·三模)如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为_______.14.(2023秋·成都市八年级课时练习)如图,在中,,,,点F在直线上,连接.若为直角三角形,求的度数.

15.(2023春·广东·八年级专题练习)在中,,,点D是边上一动点,将沿直线翻折,使点A落在点E处,连接,交于点F.当是直角三角形时,求度数.16.(2023秋·江西新余·八年级统考阶段练习)在中,,,,点从点出发以的速度沿向点运动,同时点从点出发以的速度沿向点运动,运动的时间为.连接.(1)当为何值时,?(2)当为何值时,为等边三角形?(3)当为何值时,为直角三角形?

17.(2023秋·广东·八年级课堂例题)某同学在学习过程中得出两个结论,结论1:在直角三角形中,夹内角的两边长是2倍的关系.结论2:在一个三角形中,如果夹内角的两边长是2倍的关系,那么这个三角形是直角三角形.(1)上述结论1_________.(填写“正确”或“不正确”)(2)上述结论2正确吗?如果你认为正确,请你给出证明;如果你认为不正确,请你给出反例.(3)等边三角形的边长为4,点分别从点同时出发,分别沿边运动,速度均为1个单位长度/秒,当点到达点时两点均停止运动,则当运动时间是多少秒时,是直角三角形?请你给出解题过程.18.(2022秋·浙江湖州·八年级统考阶段练习)定义:如图,点把线段分割成,若以为边的三角形是一个直角三角形,则称点是线段的勾股分割点.

(1)已知把线段分割成,若,,,则点是线段的勾股分割点吗?请说明理由.(2)已知点是线段的勾股分割点,且为直角边,若,,求的长.19.(2022·湖北荆州·八年级期中)如图,已知等边ABC的边长为8cm,点P以1cm/s的速度从顶点A沿AB向B点运动,点Q同时以2cm/s的速度从顶点B沿BC向C点运动,其中一点到达终点时两点停止运动.设它们的运动时间为t秒,连接AQ,PQ.(1)当时,试判断AQ与BC的位置关系,并说明理由;(2)当t为何值时,PBQ是直角三角形?20.(2022秋·四川成都·八

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论