




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页2025届黑龙江省双鸭山市集贤县数学九上开学质量跟踪监视模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)已知小强家、体育馆、文具店在同一直线上如图中的图象反映的过程是:小强从家跑步去体育馆,在那里锻炼了一阵后又走到文具店去买笔,然后散步回家.下列信息中正确的是()A.小强在体育馆花了20分钟锻炼B.小强从家跑步去体育场的速度是10km/hC.体育馆与文具店的距离是3kmD.小强从文具店散步回家用了90分钟2、(4分)(2013年四川绵阳3分)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=【】A.cmB.cmC.cmD.cm3、(4分)菱形的对角线不一定具有的性质是()A.互相平分 B.互相垂直 C.每一条对角线平分一组对角 D.相等4、(4分)如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.7,24,25 B.,, C.6,8,10 D.9,12,155、(4分)如图,按下面的程序进行运算.规定:程序运行到“判断结果是否大于35”为一次运算.若运算进行了3次才停止,则x的取值范围是()A.7<x≤11 B.7≤x<11C.7<x<11 D.7≤x≤116、(4分)对于实数x,我们规定表示不大于x的最大整数,例如,,,若,则x的取值可以是()A.40 B.45 C.51 D.567、(4分)河堤横断面如图所示,斜坡AB的坡度=1:,BC=5米,则AC的长是()米.A. B.5 C.15 D.8、(4分)寓言故事《乌鸦喝水》教导我们遇到困难要运用智慧、认真思考才能让问题迎刃而解.如图,一个紧口瓶中盛有一些水,可乌鸦的嘴够不到瓶中的水.于是乌鸦衔来一些小石子放入瓶中,瓶中的水面高度得到提升.由于放入的石子较多,水都快溢出来了,乌鸦成功喝到了水,如果衔入瓶中石子的体积为,水面高度为,下面图象能大致表示该故事情节的是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为.10、(4分)关于一元二次方程的一个根为,则另一个根为__________.11、(4分)若反比例函数的图象经过点,则的图像在_______象限.12、(4分)如图,□ABCD的对角线AC,BD相交于点O,若AO+BO=5,则AC+BD的长是________.13、(4分)直角三角形一条直角边为6,斜边为10,则三边中点所连三角形的周长是_________面积是___________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在四边形中,,,对角线,交于点,平分,过点作,交的延长线于点,连接.(1)求证:四边形是菱形;(2)若,,求的长.15、(8分)申思同学最近在网上看到如下信息:总书记明确指示,要重点打造北京非首都功能疏解集中承载地,在河北适合地段规划建设一座以新发展理念引领的现代新型城区.雄安新区不同于一般意义上的新区,其定位是重点承接北京疏解出的与去全国政治中心、文化中心、国际交往中心、科技创新中心无关的城市功能,包括行政事业单位、总部企业、金融机构、高等院校、科研院所等.右图是北京、天津、保定和雄安新区的大致交通图,其中保定、天津和雄安新区可近似看作在一条直线上.申思同学想根据图中信息求出北京和保定之间的大致距离.他先画出如图示意图,其中AC=AB=BC=100,点C在线段BD上,他把CD近似当作40,来求AD的长.请帮申思同学解决这个问题.16、(8分)2017年5月14日——5月15日.“一带一路”国际合作高峰论坛在北京成功举办,高峰论坛期间及前夕,各国政府、地方、企业等达成一系列合作共识、重要举措及务实成果.中方对其中具有代表性的一些成果进行了梳理和汇总,形成高峰论坛成果清单.清单主要涵盖政策沟通、设施联通、贸易畅通、资金融通、民心相通5大类,共76大项、270多项具体成果.我市新能源产业受这一利好因素,某企业的利润逐月提高.据统计,2017年第一季度的利润为2000万元,第三季度的利润为2880万元.(1)求该企业从第一季度到第三季度利润的平均增长率;(2)若第四季度保持前两季度利润的平均增长率不变,该企业2017年的年利润总和能否突破1亿元?17、(10分)矩形ABCD中,点E、F分别在边CD、AB上,且DE=BF,∠ECA=∠FCA.(1)求证:四边形AFCE是菱形;(2)若AB=8,BC=4,求菱形AFCE的面积.18、(10分)用适当的方法解方程:(1)(2)B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)一个等腰三角形的两条边长分别是方程的两根,则该等腰三角形的周长是______.20、(4分)计算:(2019﹣)0+(﹣1)2017+|2﹣π|+=_____.21、(4分)如图,有一个由传感器A控制的灯,要装在门上方离地面4.5m的墙上,任何东西只要移至该灯5m及5m内,灯就会自动发光,小明身高1.5m,他走到离墙_______的地方灯刚好发光.22、(4分)如图,在平行四边形中,AD=2AB,平分交于点E,且,则平行四边形的周长是____.23、(4分)如图,直线y1=kx+b与直线y2=mx交于点P(1,m),则不等式mx>kx+b的解集是______二、解答题(本大题共3个小题,共30分)24、(8分)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛,各参赛选手的成绩如下:九(1)班:88,91,92,93,93,93,94,98,98,100;九(2)班:89,93,93,93,95,96,96,98,98,1.通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差九(1)班100m939312九(2)班195np8.4(1)直接写出表中m、n、p的值为:m=______,n=______,p=______;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好.”但也有人说(2)班的成绩要好.请给出两条支持九(2)班成绩更好的理由;(3)学校确定了一个标准成绩,等于或大于这个成绩的学生被评定为“优秀”等级,如果九(2)班有一半的学生能够达到“优秀”等级,你认为标准成绩应定为______分,请简要说明理由.25、(10分)如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,分别按下列要求画以格点为顶点三角形和平行四边形.(1)三角形三边长为4,3,;(2)平行四边形有一锐角为45°,且面积为1.26、(12分)如图,边长为5的正方形OABC的顶点O在坐标原点处,点A,C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AG交于点P.(1)求证:CE=EP.(2)若点E的坐标为(3,0),在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,求出点M的坐标;若不存在,说明理由.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】
根据图象信息即可解决问题.【详解】解:A.小强在体育馆花了分钟锻炼,错误;B.小强从家跑步去体育场的速度是,正确;C.体育馆与文具店的距高是,错误;D.小强从文具店散步回家用了分钟,错误;故选:B.本题考查了函数图象,观察函数图象,逐一分析四条说法的正误是解题的关键.2、B。【解析】∵四边形ABCD是菱形,对角线AC=8cm,BD=6cm,∴AO=4cm,BO=3cm。,在Rt△AOB中,,∵BD×AC=AB×DH,∴DH=cm。在Rt△DHB中,,AH=AB﹣BH=cm。∵,∴GH=AH=cm。故选B。考点:菱形的性质,勾股定理,锐角三角函数定义。3、D【解析】
根据菱形的对角线性质,即可得出答案.【详解】解:∵菱形的对角线互相垂直平分,且每一条对角线平分一组对角,
∴菱形的对角线不一定具有的性质是相等;
故选:D.此题主要考查了菱形的对角线性质,熟记菱形的对角线互相垂直平分,且每一条对角线平分一组对角是解题的关键.4、B【解析】
根据勾股定理的逆定理,计算每个选项中两个较小数的平方的和是否等于最大数的平方,等于则能组成直角三角形,不等于则不能组成直角三角形.【详解】A.,能组成直角三角形,故此选项错误;B.,不能组成直角三角形,故此选项正确;C.,能组成直角三角形,故此选项错误;D.,能组成直角三角形,故此选项错误;故选:B.本题考查了勾股定理逆定理,解答此题关键是掌握勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.5、A【解析】
根据运算程序,前两次运算结果小于等于35,第三次运算结果大于35列出不等式组,然后求解即可.【详解】依题意,得:,解得7<x≤1.故选A.本题考查了一元一次不等式组的应用,读懂题目信息,理解运输程序并列出不等式组是解题的关键.6、C【解析】
解:根据定义,得∴解得:.故选C.7、A【解析】
Rt△ABC中,已知坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.【详解】解:Rt△ABC中,BC=5米,tanA=1:,∴tanA=,∴AC=BC÷tanA=5÷=米,故选:A.此题主要考查学生对坡度坡角的掌握及三角函数的运用能力,解题的关键是熟练掌握坡度的定义,此题难度不大.8、D【解析】
根据题意可以分析出各段过程中h与t的函数关系,从而可以解答本题.【详解】解:由题意可得,
刚开始瓶子内盛有一些水,则水面的高度大于0,故选项A,B错误,
然后乌鸦衔来一些小石子放入瓶中,瓶中的水面高度随着t的增加缓慢增加,当水面与瓶子竖直部分持平时,再继续上升的过程中,h与t成一次函数图象,故选项C错误,选项D正确,
故选:D.本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本大题共5个小题,每小题4分,共20分)9、y=-x+1【解析】由函数的图象与直线y=-x+1平行,可得斜率,将点(8,2)代入即可人求解.解:设所求一次函数的解析式为y=kx+b,∵函数的图象与直线y=-x+1平行,∴k=-1,又过点(8,2),有2=-1×8+b,解得b=1,∴一次函数的解析式为y=-x+1,故答案为y=-x+1.10、1【解析】
利用根与系数的关系可得出方程的两根之积为-1,结合方程的一个根为-1,可求出方程的另一个根,此题得解.【详解】∵a=1,b=m,c=-1,
∴x1•x2==-1.
∵关于x一元二次方程x2+mx-1=0的一个根为x=-1,
∴另一个根为-1÷(-1)=1.
故答案为:1.此题考查根与系数的关系以及一元二次方程的解,牢记两根之积等于是解题的关键.11、二、四【解析】
用待定系数法求出k的值,根据反比例函数的性质判断其图像所在的象限即可.【详解】解:将点代入得,解得:因为k<0,所以的图像在二、四象限.故答案为:二、四本题考查了反比例函数的性质,,当k>0时,图像在一、三象限,当k<0时,图像在二、四象限,正确掌握该性质是解题的关键.12、1;【解析】
根据平行四边形的性质可知:AO=OC,BO=OD,从而求得AC+BC的长.【详解】∵四边形ABCD是平行四边形∴OC=AO,OB=OD∵AO=BO=2∴OC+OD=2∴AC+BD=AO+BO+CO+DO=1故答案为:1.本题考查平行四边形的性质,解题关键是得出OC+OD=2.13、126【解析】
先依据题意作出简单的图形,进而结合图形,运用勾股定理得出AC,由三角形中位线定理计算即可求出结果【详解】解:如图,∵D,E,F分别是△ABC的三边的中点,AB=10,BC=6,∠C=90°;根据勾股定理得:,∵D,E,F分别是△ABC的三边的中点,,,∴∠C=∠BED=∠EDF=90°;∴△DEF的周长;△DEF的面积故答案为:12,6本题考查了三角形的中位线定理和勾股定理,掌握三角形的中位线等于第三边的一半是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2).【解析】
(1)由平行线的性质和角平分线得出∠ADB=∠ABD,证出AD=AB,由AB=BC得出AD=BC,即可得出结论;(2)由菱形的性质得出AC⊥BD,OB=OD,OA=OC=AC=1,在Rt△OCD中,由勾股定理得:OD==2,得出BD=2OD=4,再由直角三角形斜边上的中线性质即可得出结果.【详解】(1)证明:,,平分,,,,,,,四边形是平行四边形,又,四边形是菱形;(2)四边形是菱形,,,,在中,由勾股定理得:,,,,,.本题考查了菱形的判定与性质、平行四边形的判定、等腰三角形的判定、平行线的性质、勾股定理、直角三角形斜边上的中线性质;熟练掌握菱形的判定与性质是解题的关键.15、见解析【解析】试题分析:作,构造直角三角形,先求出DE和AE的长度,再根据勾股定理求得AD的长度.试题解析:作.∵,∴为等边三角形.∵,∴,,∴,∴.∵中,.∵,∴.∵中,,.∵,∴.16、(1)该企业从第一季度到第三季度利润的平均增长率为20%.(2)该企业2017年的年利润总和能突破1亿元.【解析】
(1)设该企业从第一季度到第三季度利润的平均增长率为x,根据第一季度及第三季度的利润,即可得出关于x的一元二次方程,解之即可得出x的值,取其正值即可;
(2)根据平均增长率求出四个季度的利润和,与1亿元比较后即可得出结论.【详解】解:(1)设该企业从第一季度到第三季度利润的平均增长率为x,根据题意得:2000(1+x)2=2880,解得:x=0.2=20%或x=﹣2.2(不合题意,舍去).答:该企业从第一季度到第三季度利润的平均增长率为20%;(2)2000+2000×(1+20%)+2880+2880×(1+20%)=10736(万元),10736万元>1亿元.答:该企业2017年的年利润总和突破1亿元.本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据平均增长率求出四个季度的利润和.17、(1)证明见解析;(2)1.【解析】分析:(1)先证明四边形AFCE是平行四边形,再证明FA=FC,根据有一组邻边相等的平行四边形是菱形得出结论;(2)设DE=x,则AE=EC=8-x,在Rt△ADE中,由勾股定理列方程求得x的值,再求菱形的面积即可.详解:(1)∵四边形ABCD是矩形,∴DC∥AB,DC=AB,∵DE=BF,∴EC=AF,而EC∥AF,∴四边形AFCE是平行四边形,由DC∥AB可得∠ECA=∠FAC,∵∠ECA=∠FCA,∴∠FAC=∠FCA,∴FA=FC,∴平行四边形AFCE是菱形;(2)解:设DE=x,则AE=EC=8-x,在Rt△ADE中,由勾股定理得42+x2=(8-x)2,解得x=3,∴菱形的边长EC=8-3=5,∴菱形AFCE的面积为:4×5=1.点睛:本题考查了矩形的性质、菱形的性质和判定、菱形的面积、勾股定理.此题难度不大,注意掌握数形结合思想的应用.18、(1)(2)【解析】
(1)利用公式法,先算出根的判别式,再根据公式解得两根即可;(2)利用因式分解法将等号左边进行因式分解,即可解出方程.【详解】解:(1)由题可得:,所以,所以整理可得,;(2)提公因式可得:化简得:解得:,;故答案为:(1),(2),.本题考查一元二次方程的解法,在解方程时要先观察方程是否可以用因式分解法去解,如果可以的话优先考虑因式分解法,如果不可以的话可以利用公式法,利用公式法时注意先算根的判别式,并且注意符号问题.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】
利用因式分解法求出x的值,再根据等腰三角形的性质分情况讨论求解.【详解】解:x2-5x+4=0,
(x-1)(x-4)=0,
所以x1=1,x2=4,
当1是腰时,三角形的三边分别为1、1、4,不能组成三角形;
当4是腰时,三角形的三边分别为4、4、1,能组成三角形,周长为4+4+1=1.
故答案是:1.本题考查了因式分解法解一元二次方程,三角形的三边关系,等腰三角形的性质,要注意分情况讨论求解.20、π+2【解析】
根据零指数幂,负整数指数幂,绝对值的性质计算即可.【详解】原式=.故答案为:.本题主要考查实数的混合运算,掌握实数的混合运算的顺序和法则是解题的关键.21、4米【解析】
过点C作CE⊥AB于点E,则人离墙的距离为CE,在Rt△ACE中,根据勾股定理列式计算即可得到答案.【详解】如图,传感器A距地面的高度为AB=4.5米,人高CD=1.5米,过点C作CE⊥AB于点E,则人离墙的距离为CE,由题意可知AE=AB-BE=4.5-1.5=3(米).当人离传感器A的距离AC=5米时,灯发光.此时,在Rt△ACE中,根据勾股定理可得,CE2=AC2-AE2=52-32=42,∴CE=4米.即人走到离墙4米远时,灯刚好发光.本题考查了勾股定理的应用,解题的关键是熟练的掌握勾股定理的定义与运算.22、18【解析】
利用平行四边形的对边相等且互相平行,进而得出AE=DE=AB,再求出ABCD的周长【详解】∵CE平分∠BCD交AD边于点E,∴.∠ECD=∠ECB∵在平行四边形ABCD中、AD∥BC,AB=CD,AD=BC∴∠DEC=∠ECB,∴∠DEC=∠DCE∴DE=DC∵AD=2AB∴AD=2CD∴AE=DE=AB=3∴AD=6∴四边形ABCD的周长为:2×(3+6)=18.故答案为:18.此题考查平行四边形的性质,解题关键在于利用平行四边形的对边相等且互相平行23、x>1【解析】分析:根据两直线的交点坐标和函数的图象即可求出答案.详解:∵直线y1=kx+b与直线y2=mx交于点P(1,m),
∴不等式mx>kx+b的解集是x>1,
故答案为x>1.点睛:解答本题的关键是熟练掌握图象在上方的部分对应的函数值大,图象在下方的部分对应的函数值小.二、解答题(本大题共3个小题,共30分)24、(1)94,92.2,93;(2)见解析;(3)92.2.【解析】
(1)求出九(1)班的平均分确定出m的值,求出九(2)班的中位数确定出n的值,求出九(2)班的众数确定出p的值即可;(2)分别从平均分,方差,以及中位数方面考虑,写出支持九(2)班成绩好的原因;(3)用中位数作为一个标准即可衡量是否有一半学生达到优秀等级.【详解】解:(1)九(1)班的平均分==94,九(2)班的中位数为(96+92)÷2=92.2,九(2)班的众数为93,故答案为:94,92.2,93;(2)①九(2)班平均分高于九(1)班;②九(2)班的成绩集中在中上游;③九(2)班的成绩比九(1)班稳定;故支持B班成绩好;(3)如果九(2)班有一半的学生评定为“优秀”等级,标准成绩应定为92.2(中位数).因为从样本情况看,成绩在92.2以上的在九(2)班有一半的学生.可以估计,如果标准成绩定为92.2,九(2)班有一半的学生能够评定为“优秀”等级,故答案为92.2.本题考查了平均数、中位数、众数以及方差的定义,属于统计中的基本题型,需重点掌握.25、(1)见解析;(2)见解析.【解析】分析:(1)4在网格线上,3是直角边为3的直角三角形的斜边,是直角边分别为1和3的直角三角形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数字智慧方案全场景智慧园区技术方案
- 数字智慧方案高楠VBEF演讲数字医疗的…智慧康养与积极老龄化论坛
- 仪表工试题复习试题有答案
- 职业资格-拍卖师真题库-2
- 针对性备战2025年工程法规考试的系统建议试题及答案
- 益阳卫生编制考试试题及答案
- 中岩培训考试试题及答案
- 初级会计实务精准复习试题及答案
- 团学干部考试试题及答案
- 餐厅收养测试题及答案
- 医院污水处理培训教学
- 机务维修作风课件讲解
- 店长入股门店合同范本
- 湖北省武汉市汉阳区2023-2024学年七年级下学期期末数学试题
- DL-T5394-2021电力工程地下金属构筑物防腐技术导则
- 2024年大学生西部计划志愿者招募笔试题库(供参考)
- 医疗器械质量体系迎审
- AI在金融行业的应用
- 护理研究框架图解
- 电感式位移传感器
- 大学生心理教育的社会支持与合作
评论
0/150
提交评论