




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2025届江西省永新县九上数学开学统考模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,▱ABCD的对角线AC、BD相交于点O,已知AD=10,BD=14,AC=8,则△OBC的周长为()A.16 B.19 C.21 D.282、(4分)下列调查最适合用查阅资料的方法收集数据的是()A.班级推选班长 B.本校学生的到时间C.2014世界杯中,谁的进球最多 D.本班同学最喜爱的明星3、(4分)已知一个正多边形的每个外角等于,则这个正多边形是()A.正五边形 B.正六边形 C.正七边形 D.正八边形4、(4分)如图所示的四边形,与选项中的四边形一定相似的是()A. B.C. D.5、(4分)下列条件中,不能判定四边形是平行四边形的是()A.对角线互相平分 B.两组对边分别相等C.对角线互相垂直 D.一组对边平行,一组对角相等6、(4分)对于任意的正数m,n定义运算※为:m※n=m-n(m≥n)mA.2-46 B.2 C.25 D.207、(4分)已知一个多边形的内角和等于它的外角和,则这个多边形的边数为A.3B.4C.5D.68、(4分)七巧板是一种古老的中国传统智力玩具.如图,在正方形纸板ABCD中,BD为对角线,E、F分别为BC、CD的中点,AP⊥EF分别交BD、EF于O、P两点,M、N分别为BO、DO的中点,连接MP、NF,沿图中实线剪开即可得到一副七巧板.若AB=1,则四边形BMPE的面积是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若实数、满足,则以、的值为边长的等腰三角形的周长为。10、(4分)若多项式x2+mx+是一个多项式的平方,则m的值为_____11、(4分)对于实数x我们规定[x]表示不大于x的最大整数,例如[1.8]=1,[7]=7,[﹣5]=﹣5,[﹣2.9]=﹣3,若[]=﹣2,则x的取值范围是_____.12、(4分)如图,的面积为36,边cm,矩形DEFG的顶点D、G分别在AB、AC上,EF在BC上,若,则______cm.13、(4分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,平行四边形的两条对角线相交于点、分别是的中点,过点作任一条直线交于点,交于点,求证:(1);(2).15、(8分)如图,从点A(0,4)出发的一束光,经x轴反射,过点C(6,4),求这束光从点A到点C所经过的路径长度.16、(8分)如图,直线的函数解析式为,且与轴交于点,直线经过点、,直线、交于点.(1)求直线的函数解析式;(2)求的面积;(3)在直线上是否存在点,使得面积是面积的倍?如果存在,请求出坐标;如果不存在,请说明理由.17、(10分)如图,把矩形放入平面直角坐标系中,使分别落在轴的正半轴上,其中,对角线所在直线解析式为,将矩形沿着折叠,使点落在边上的处.(1)求点的坐标;(2)求的长度;(3)点是轴上一动点,是否存在点使得的周长最小,若存在,请求出点的坐标,如不存在,请说明理由.18、(10分)如图,在正方形ABCD中,点E,F分别在边AD,CD上,(1)若AB=6,AE=CF,点E为AD的中点,连接AE,BF.①如图1,求证:BE=BF=3;②如图2,连接AC,分别交AE,BF于M,M,连接DM,DN,求四边形BMDN的面积.(2)如图3,过点D作DH⊥BE,垂足为H,连接CH,若∠DCH=22.5°,则的值为(直接写出结果).B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知1<x<5,化简+|x-5|=____.20、(4分)在弹性限度内,弹簧的长度是所挂物体质量的一次函数,当所挂物体的质量分别为和时,弹簧长度分别为和,当所挂物体的质量为时弹簧长________厘米?21、(4分)如图,含有30°的直角三角板△ABC,∠BAC=90°,∠C=30°,将△ABC绕着点A逆时针旋转,得到△AMN,使得点B落在BC边上的点M处,过点N的直线l∥BC,则∠1=______.22、(4分)若一组数据1,3,,5,4,6的平均数是4,则这组数据的中位数是__________.23、(4分)如果一个多边形的每一个外角都等于60°,则它的内角和是__________.二、解答题(本大题共3个小题,共30分)24、(8分)甲、乙两名射击运动员进行射击比赛,两人在相同的条件下各射击10次,射击的成绩如图所示.根据图中信息,解答下列问题:(1)算出乙射击成绩的平均数;(2)经计算,甲射击成绩的平均数为8,乙射击成绩的方差为1.2,请你计算出甲射击成绩的方差,并判断谁的射击成绩更加稳定.25、(10分)如图1,以□ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.(1)猜想BG与EG的数量关系.并说明理由;(2)延长DE,BA交于点H,其他条件不变,①如图2,若∠ADC=60°,求的值;②如图3,若∠ADC=α(0°<α<90°),直接写出的值.(用含α的三角函数表示)26、(12分)化简:
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
由平行四边形的性质得出OA=OC=4,OB=OD=7,BC=AD=10,即可求出△OBC的周长.【详解】∵四边形ABCD是平行四边形,∴OA=OC=4,OB=OD=7,BC=AD=10,∴△OBC的周长=OB+OC+AD=4+7+10=1.故选:C.本题主要考查了平行四边形的性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.2、C【解析】
了解收集数据的方法及渠道,得出最适合用查阅资料的方法收集数据的选项.【详解】A、B、D适合用调查的方法收集数据,不符合题意;C适合用查阅资料的方法收集数据,符合题意.故选C.本题考查了调查收集数据的过程与方法.解题关键是掌握收集数据的几种方法:查资料、做实验和做调查.3、B【解析】分析:根据多边形的外角和为360°即可得出答案.详解:360°÷60°=6,即六边形,故选B.点睛:本题主要考查的是正多边形的外角和定理,属于基础题型.多边形的内角和定理为(n-2)×180°,多边形的外角和为360°.4、D【解析】
根据勾股定理求出四边形ABCD的四条边之比,根据相似多边形的判定方法判断即可.【详解】作AE⊥BC于E,则四边形AECD为矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,AB==5,∴四边形ABCD的四条边之比为1:3:5:5,D选项中,四条边之比为1:3:5:5,且对应角相等,故选:D.此题考查相似多边形的判定定理,两个多边形的对应角相等,对应边成比例,则这两个多边形相似,此题求出多边形的剩余边长是解题的关键,利用矩形的性质定理,勾股定理求出边长.5、C【解析】
利用平行四边形的判定可求解.【详解】A、对角线互相平分的四边形是平行四边形,故该选项不符合题意;B、两组对边分别相等的四边形是平行四边形,故该选项不符合题意;C、对角线互相垂直的四边形不一定是平行四边形,故该选项符合题意;D、一组对边平行,一组对角相等,可得另一组对角相等,由两组对角相等的四边形是平行四边形,故该选项不符合题意;故选C.本题考查了平行四边形的判定,熟练掌握平行四边形的判定是本题的关键.6、B【解析】试题分析:∵3>2,∴3※2=3-2,∵8<22,∴8※22=8+12=2(2考点:2.二次根式的混合运算;2.新定义.7、B【解析】试题分析:∵多边形的外角和是360度,多边形的内角和等于它的外角和,则内角和是360度,∴这个多边形是四边形.故选B.考点:多边形内角与外角.视频8、B【解析】
根据三角形的中位线的性质得到EF∥BD,EF=BD,推出点P在AC上,得到PE=EF,得到四边形BMPE平行四边形,过M作MF⊥BC于F,根据平行四边形的面积公式即可得到结论.【详解】∵E,F分别为BC,CD的中点,∴EF∥BD,EF=BD,∵四边形ABCD是正方形,且AB=BC=1,∴BD=,∵AP⊥EF,∴AP⊥BD,∴BO=OD,∴点P在AC上,∴PE=EF,∴PE=BM,∴四边形BMPE是平行四边形,∴BO=BD,∵M为BO的中点,∴BM=BD=,∵E为BC的中点,∴BE=BC=,过M作MF⊥BC于F,∴MF=BM=,∴四边形BMPE的面积=BE•MF=,故选B.本题考查了七巧板,正方形的性质,平行四边形的判定和性质,三角形的中位线的性质,正确的识别图形是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、20。【解析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8。①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20。所以,三角形的周长为20。10、±.【解析】
根据完全平方公式的结构特征即可求出答案.【详解】解:∵x2+mx+=x2+mx+()2,∴mx=±2××x,解得m=±.故答案为±.本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.11、﹣9≤x<﹣1【解析】
根据题意可以列出相应的不等式,解不等式求出x的取值范围即可得答案.【详解】∵[x]表示不大于x的最大整数,[]=﹣2,∴﹣2≤<﹣1,解得:﹣9≤x<﹣1.故答案为:﹣9≤x<﹣1.本题考查了一元一次不等式组和一元一次不等式组的整数解的应用,能根据题意得出关于x的不等式组是解题关键.12、6【解析】
作AH⊥BC于H点,可得△ADG∽△ABC,△BDE∽△BAH,根据相似三角形对应边比例等于相似比可解题.【详解】解:作AH⊥BC于H点,∵四边形DEFG为矩形,
∴△ADG∽△ABC,△BDE∽△BAH,∵的面积为36,边cm∴AH=6∵EF=2DE,即DG=2DE解得:DE=3∴DG=6故答案为:6本题考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质.13、【解析】
先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【详解】如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF-BC=1+-2=-1,故答案为-1.此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)见解析【解析】
(1)因为四边形是平行四边形,,证得≌,即可求出;(2)因为四边形ABCD是平行四边形,G是OC的中点,E是OA的中点,所以可以证得OF=OH,又根据(1)中结论,即可得出四边形EFGH是平行四边形,根据平行四边形性质可得.【详解】证明:(1)∵四边形是平行四边形,∴,,∴,∴≌,∴(2)∵是的中点,是的中点,∴,,∴又∵∴四边形是平行四边形,∴本题考查了平行四边形的判定与性质.解题的关键是选择适宜的证明方法.此题出现了对角线,所以选择对角线互相平分的四边形是平行四边形证明比较简单.15、10.【解析】
首先过点B作BD⊥x轴于D,由A(0,4),C(6,4),即可得OA=CD=4,OD=6,由题意易证得△AOB≌△CDB,根据全等三角形即可得OB=BD=3,AB=CB,又由勾股定理即可求得这束光从点A到点C所经过的路径的长.【详解】解:如图,过点C作CD⊥x轴于点D,∵A(0,4),C(6,4),∴OA=CD=4,OD=6,由题意得,∠ABO=∠CBD,∵∠AOB=∠CDB=90°,∴△AOB≌△CDB,∴OB=BD=3,AB=CB,在Rt△AOB中,,∴这束光从点A到点C所经过的路径长度为AB+BC=10.此题考查勾股定理,点的坐标,解题关键在于作辅助线.16、(1);(2)3;(3)在直线上存在点或,使得面积是面积的倍.【解析】
(1)根据点A、B的坐标利用待定系数法即可求出直线l2的函数解析式;
(2)令y=-2x+4=0求出x值,即可得出点D的坐标,联立两直线解析式成方程组,解方程组即可得出点C的坐标,再根据三角形的面积即可得出结论;
(3)假设存在点P,使得△ADP面积是△ADC面积的1.5倍,根据两三角形面积间的关系|yP|=1.5|yC|=3,再根据一次函数图象上点的坐标特征即可求出点P的坐标.【详解】解:(1)设直线的函数解析式为,将、代入,,解得:,直线的函数解析式为.(2)联立两直线解析式成方程组,,解得:,点的坐标为.当时,,点的坐标为..(3)假设存在.面积是面积的倍,,当时,,此时点的坐标为;当时,,此时点的坐标为.综上所述:在直线上存在点或,使得面积是面积的倍.故答案为(1);(2)3;(3)在直线上存在点或,使得面积是面积的倍.本题考查两条直线相交或平行问题、一次函数图象上点的坐标特征以及待定系数法求一次函数解析式,根据给定点的坐标利用待定系数法求出函数解析式是解题的关键.17、(1);(2);(3),见解析.【解析】
(1)根据点C的坐标确定b的值,利用待定系数法求出点A坐标即可解决问题;(2)在Rt△BCD中,BC=6,BD=AB=10,CD==8,OD=10-8=2,设DE=AE=x,在Rt△DEO中,根据DE2=OD2+OE2,构建方程即可解决问题;(3)如图作点E关于y轴的对称点E′,连接BE′交y轴于P,此时△BPE的周长最小.利用待定系数法求出直线BE′的解析式即可解决问题;【详解】解:,四边形是矩形,,代入得到直线的解析式为令,得到.在中,,设在中,如图作点关于轴的对称点,连接交轴于,此时的周长最小.设直线的解析式为,则有,解得:直线的解析式为本题考查一次函数综合题、矩形的性质、翻折变换、勾股定理等知识,解题的关键是熟练掌握待定系数法解决问题,学会利用轴对称解决最短问题,属于中考压轴题.18、(1)①详见解析;②12;(2).【解析】
(1)①先求出AE=3,进而求出BE,再判断出△BAE≌△BCF,即可得出结论;②先求出BD=6,再判断出△AEM∽△CMB,进而求出AM=2,再判断出四边形BMDN是菱形,即可得出结论;(2)先判断出∠DBH=22.5°,再构造等腰直角三角形,设出DH,进而得出HG,BG,即可得出BH,结论得证.【详解】解:(1)①∵四边形ABCD是正方形,∴AB=BC=AD=6,∠BAD=∠BCD=90°,∵点E是中点,∴AE=AD=3,在Rt△ABE中,根据勾股定理得,BE==3,在△BAE和△BCF中,∴△BAE≌△BCF(SAS),∴BE=BF,∴BE=BF=3;②如图2,连接BD,在Rt△ABC中,AC=AB=6,∴BD=6,∵四边形ABCD是正方形,∴AD∥BC,∴△AEM∽△CMB,∴,∴,∴AM=AC=2,同理:CN=2,∴MN=AC﹣AM﹣CN=2,由①知,△ABE≌△CBF,∴∠ABE=∠CBF,∵AB=BC,∠BAM=∠BCN=45°,∴△ABM≌△CBN,∴BM=BN,∵AC是正方形ABCD的对角线,∴AB=AD,∠BAM=∠DAM=45°,∵AM=AM,∴△BAM≌△DAM,∴BM=DM,同理:BN=DN,∴BM=DM=DN=BN,∴四边形BMDN是菱形,∴S四边形BMDN=BD×MN=×6×2=12;(2)如图3,设DH=a,连接BD,∵四边形ABCD是正方形,∴∠BCD=90°,∵DH⊥BH,∴∠BHD=90°,∴点B,C,D,H四点共圆,∴∠DBH=∠DCH=22.5°,在BH上取一点G,使BG=DG,∴∠DGH=2∠DBH=45°,∴∠HDG=45°=∠HGD,∴HG=HD=a,在Rt△DHG中,DG=HD=a,∴BG=a,∴BH=BG+HG=A+A=(+1)a,∴.故答案为.此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,菱形的判定和性质,勾股定理,判断出四边形BMDN是菱形是解本题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、4【解析】【分析】由已知判断x-1>0,x-5<0,再求绝对值.【详解】因为1<x<5,+|x-5|=|x-1|+|x-5|=x-1+5-x=4故答案为:4【点睛】本题考核知识点:二次根式化简.解题关键点:求绝对值.20、【解析】
设y与x的函数关系式为y=kx+b,由待定系数法求出其解即可;把x=4时代入解析式求出y的值即可.【详解】设y与x的函数关系式为y=kx+b,由题意,得:,解得:.故y与x之间的关系式为:y=x+14.1;当x=4时,y=0.1×4+14.1=16.1.故答案为:16.1此题考查根据实际问题列一次函数关系式,解题关键在于列出方程21、30°【解析】试题分析:根据旋转图形的性质可得:AB=AM,∠AMN=∠B=60°,∠ANM=∠C=30°,根据∠B=60°可得:△ABM为等边三角形,则∠NMC=60°,根据平行线的性质可得:∠1+∠ANM=∠NMC=60°,则∠1=60°-30°=30°.22、4.5【解析】
根据题意可以求得x的值,从而可以求的这组数据的中位数.【详解】解:∵数据1、3、x、5、4、6的平均数是4,∴解得:x=5,则这组数据按照从小到大的顺序排列为:1,3,4,5,5,6则中位数为故答案为:4.5本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.23、720°【解析】
根据多边形的外角和等于360°,可求出这个多边形的边数,进而,求出这个多边形的内角和.【详解】∵一个多边形的每一个外角都等于60°,又∵多边形的外角和等于360°,∴这个多边形的边数=360°÷60°=6,∴这个多边形的内角和=,故答案是:720°.本题主要考查多边形的外角和等于360°以及多边形的内角和公式,掌握多边形的外角和等于360°是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)8;(2)乙.【解析】
(1)用乙10次射击的成绩之和除以10即可得;(2)根据方差的计算方法求出甲的方差,方差小的成绩更加稳定.【详解】解:(1);(2),∵;∴乙的射击成绩更稳定.故答案为(1)8;(2)乙.本题考查了求平均数和方差,以及利用方差做判断,方差越小,数据的波动越小,更稳定.25、(1),理由见解析;(2);(3).【解析】
(1)BG=EG,根据已知条件易证△BAG≌△EFG,根据全等三角形的对应边相等即可得结
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医保直付医院绿色通道建设与管理协议
- 未成年人探视期间安全保护及责任落实协议
- 新能源汽车行业区域分销合作伙伴合同
- 护理支持性理论
- 传染病日常卫生监督实务要点
- 肿瘤血栓诊疗难点与对策
- 脑外科引流护理规范与实践
- 大班语言:冬天的礼物
- 酒店安保服务协议书(2篇)
- 转运病人护理查房
- GB/T 15934-2024电器附件电线组件和互连电线组件
- CQI-23模塑系统评估审核表-中英文
- 2023年重庆市中考化学试卷(B卷)及答案解析
- 湖北省2024年中考生物试卷
- 基于机器学习的腐蚀监测
- 林下经济的开发与利用
- 风景区旅游解说系统设计考核试卷
- 山西建投集团考试真题
- DL∕ T 802.7-2010 电力电缆用导管技术条件 第7部分:非开挖用改性聚丙烯塑料电缆导管
- 2024年辽宁省中考英语试题(附答案)
- 锅炉安装合同协议书
评论
0/150
提交评论