




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DigitalImageProcessingWaveletandMultiresolutionProcessing
MultiresolutionAnalysisManysignalsorimagescontainfeaturesatvariouslevelsofdetail(i.e.,scales). Smallsizeobjectsshouldbeexaminedatahigh
resolution.Largesizeobjectsshouldbeexaminedatalow
resolution.MultiresolutionAnalysis(cont’d)Localimagestatisticsarequitedifferentfromglobalimagestatistics.Modelingentireimageisdifficultorimpossible.Needtoanalyzeimagesatmultiplelevelsofdetail.Transform:AmathematicaloperationthattakesafunctionorsequenceandmapsitintoanotheroneTransformsaregoodthingsbecause…Thetransformofafunctionmaygiveadditional/hiddeninformationabouttheoriginalfunction,whichmaynotbeavailable/obviousotherwiseThetransformofanequationmaybeeasiertosolvethantheoriginalequationThetransformofafunction/sequencemayrequirelessstorage,henceprovidedatacompression/reductionAnoperationmaybeeasiertoapplyonthetransformedfunction,ratherthantheoriginalfunction(recallconvolution)Introduction(RobiPolikar,RowanUniversity)
WhatisaTransformandWhydoWeNeedOne?Mostusefultransformsare:Linear:wecanpulloutconstants,andapplysuperpositionOne-to-one:differentfunctionshavedifferenttransformsInvertible:foreachtransformT,thereisaninversetransformT-1usingwhichtheoriginalfunctionfcanberecovered(kindof–sortoftheundobutton…)Continuoustransform:mapfunctionstofunctionsDiscretetransform:mapsequencestosequencesTfFT-1fIntroduction
PropertiesofTransformsComplexfunctionrepresentationthroughsimplebuildingblocksCompressedrepresentationthroughusingonlyafewblocks(calledbasisfunctions/kernels)Sinusoidsasbuildingblocks:FouriertransformFrequencydomainrepresentationofthefunctionIntroduction
WhatDoesaTransformLookLike?FourierseriesContinuousFouriertransformLaplacetransformDiscreteFouriertransformZ-transformIntroduction
WhatTransformsareAvailable?JeanB.JosephFourier(1768-1830)“Anarbitraryfunction,continuousorwithdiscontinuities,definedinafiniteintervalbyanarbitrarilycapriciousgraphcanalwaysbeexpressedasasumofsinusoids” J.B.J.FourierDecember,21,1807Introduction
FourierWho…?RecallthatFTusescomplexexponentials(sinusoids)asbuildingblocks.Foreachfrequencyofcomplexexponential,thesinusoidatthatfrequencyiscomparedtothesignal.Ifthesignalconsistsofthatfrequency,thecorrelationishighlargeFTcoefficients.Ifthesignaldoesnothaveanyspectralcomponentatafrequency,thecorrelationatthatfrequencyislow/zero,small/zeroFTcoefficient.Introduction
HowDoesFTWorkAnyway?Introduction
FTatWorkFFFIntroduction
FTatWorkFIntroduction
FTatWorkComplexexponentials(sinusoids)asbasisfunctions:FAnultrasonicA-scanusing1.5MHztransducer,sampledat10MHzIntroduction
FTatWorkFTidentifiesallspectralcomponentspresentinthesignal,howeveritdoesnotprovideanyinformationregardingthetemporal(time)localizationofthesecomponents.Why?StationarysignalsconsistofspectralcomponentsthatdonotchangeintimeallspectralcomponentsexistatalltimesnoneedtoknowanytimeinformationFTworkswellforstationarysignalsHowever,non-stationarysignalsconsistsoftimevaryingspectralcomponentsHowdowefindoutwhichspectralcomponentappearswhen?FTonlyprovideswhatspectralcomponentsexist
,notwhereintimetheyarelocated.NeedsomeotherwaystodeterminetimelocalizationofspectralcomponentsIntroduction
StationaryandNon-stationarySignalsStationarysignals’spectralcharacteristicsdonotchangewithtimeNon-stationarysignalshavetimevaryingspectraConcatenationIntroduction
StationaryandNon-stationarySignals5Hz25Hz50HzPerfectknowledgeofwhatfrequenciesexist,butnoinformationaboutwherethesefrequenciesarelocatedintimeIntroduction
Non-stationarySignalsComplexexponentialsstretchouttoinfinityintimeTheyanalyzethesignalglobally,notlocallyHence,FTcanonlytellwhatfrequenciesexistintheentiresignal,butcannottell,atwhattimeinstancesthesefrequenciesoccurInordertoobtaintimelocalization
ofthespectralcomponents,thesignalneedtobeanalyzedlocally,BUTHOW?Introduction
FTShortcomingsChooseawindowfunctionoffinitelengthPutthewindowontopofthesignalatt=0TruncatethesignalusingthiswindowComputetheFTofthetruncatedsignal,save.SlidethewindowtotherightbyasmallamountGotostep3,untilwindowreachestheendofthesignalForeachtimelocationwherethewindowiscentered,weobtainadifferentFTHence,eachFTprovidesthespectralinformationofaseparatetime-sliceofthesignal,providingsimultaneoustimeandfrequencyinformationIntroduction
ShortTimeFourierTransform(STFT)Introduction
ShortTimeFourierTransform(STFT)STFTofsignalx(t):Computedforeachwindowcenteredatt=t’TimeparameterFrequencyparameterSignaltobeanalyzedWindowingfunctionWindowingfunctioncenteredatt=t’FTKernel(basisfunction)Introduction
ShortTimeFourierTransform(STFT)0100200300-1.5-1-0.500.510100200300-1.5-1-0.500.510100200300-1.5-1-0.500.510100200300-1.5-1-0.500.51WindowedsinusoidallowsFTtobecomputedonlythroughthesupportofthewindowingfunctionIntroduction
STFTatWorkIntroduction
STFT300Hz200Hz100Hz50HzSTFTprovidesthetimeinformationbycomputingadifferentFTsforconsecutivetimeintervals,andthenputtingthemtogetherTime-FrequencyRepresentation(TFR)Maps1-Dtimedomainsignalsto2-Dtime-frequencysignalsConsecutivetimeintervalsofthesignalareobtainedbytruncatingthesignalusingaslidingwindowingfunctionHowtochoosethewindowingfunction?Whatshape?Rectangular,Gaussian,Elliptic…?Howwide?Introduction
STFTTwoextremecases:W(t)infinitelylong:
STFTturnsintoFT,providingexcellentfrequencyinformation(goodfrequencyresolution),butnotimeinformationW(t)infinitelyshort:
STFTthengivesthetimesignalback,withaphasefactor.Excellenttimeinformation(goodtimeresolution),butnofrequencyinformationIntroduction
SelectionofSTFTWindowWideanalysiswindowpoortimeresolution,goodfrequencyresolutionNarrowanalysiswindowgoodtimeresolution,poorfrequencyresolutionOncethewindowischosen,theresolutionissetforbothtimeandfrequency.Timeresolution:HowwelltwospikesintimecanbeseparatedfromeachotherinthetransformdomainFrequencyresolution:HowwelltwospectralcomponentscanbeseparatedfromeachotherinthetransformdomainBothtimeandfrequencyresolutionscannotbearbitrarilyhigh!!!
Wecannotpreciselyknowatwhattimeinstanceafrequencycomponentislocated.WecanonlyknowwhatintervaloffrequenciesarepresentinwhichtimeintervalsIntroduction
HeisenbergUncertaintyPrincipleIntroduction
STFTGaussianwindowfunction:a=0.01a=0.0001a=0.00001OvercomesthepresetresolutionproblemoftheSTFTbyusingavariablelengthwindowAnalysiswindowsofdifferentlengthsareusedfordifferentfrequencies:AnalysisofhighfrequenciesUsenarrowerwindowsforbettertimeresolutionAnalysisoflowfrequenciesUsewiderwindowsforbetterfrequencyresolutionThisworkswell,ifthesignaltobeanalyzedmainlyconsistsofslowlyvaryingcharacteristicswithoccasionalshorthighfrequencybursts.Heisenbergprinciplestillholds!!!Thefunctionusedtowindowthesignaliscalledthewavelet
Introduction
WaveletTransformContinuouswavelettransformofthesignalx(t)usingtheanalysiswavelet(.)Translationparameter,measureoftimeScaleparameter,measureoffrequencyThemotherwavelet.Allkernelsareobtainedbytranslating(shifting)and/orscalingthemotherwaveletAnormalizationconstantSignaltobeanalyzedScale=1/frequencyIntroduction
WaveletTransformHighfrequency(smallscale)Lowfrequency(largescale)Introduction
WTatWorkIntroduction
WTatWorkIntroduction
WTatWorkIntroduction
WTatWorkIntroduction
TimeandFrequencyResolutionBackgroundImagePyramidsComputeareduced-resolutionapproximationoftheinputimageFiltering(Averaging,Gaussian)Down-samplingUp-sampletheoutputofthepreviousbyafactor2Computethedifferencebetweenthepredictionofstep2andtheinputto
Step1.ImagePyramidsImagePyramidsInMulti-resolutionAnalysis(MRA),aScalingFunctionisusedtocreateaseriesofapproximationsofafunctionorimage,eachdifferingbyafactor2fromitsnearestneighboringapproximations.Additionalfunctions,calledWavelet,areusedtoencodethedifferenceininformationbetweenadjacentapproximationMulti-ResolutionExpansionMulti-ResolutionExpansion
SeriesExpansionReal-valuedexpansioncoefficientsReal-valuedexpansionfunctionsIftheexpansionisUNIQUE-thatis,thereisonlyonesetofforanygiven-thearecalledbasisfunctions,andtheexpansionset,,iscalledaBASISfortheclassoffunctionsthatcanbesoexpressed.TheexpressiblefunctionsformafunctionspacethatisreferredtoastheclosespanoftheexpansionsetMulti-ResolutionExpansion
SeriesExpansionDualFunctionsMulti-ResolutionExpansion
SeriesExpansionCASE1:ExpansionfunctionsformanorthonormalbasisCASE2:Expansionfunctionsarenotorthonormal,butareanorthogonalbasis(biorthogonalbasis)CASE3:ExpansionsetisnotabasisMulti-ResolutionExpansion
ScalingFunctionsMulti-ResolutionExpansion
ScalingFunctionsThescalingfunctionsisORTHOGONALtoitsintegertranslations.Thesubspacespannedbythescalingfunctionatlowscalesarenestedwithinthosespannedathigherscales.TheonlyfunctionthatiscommontoallVj
is
f(x)=0AnyfunctioncanberepresentedwitharbitraryprecisionMulti-ResolutionExpansion
MRARequirementsMulti-ResolutionExpansion
MRARequirementsScalingVectorMulti-ResolutionExpansion
WaveletFunctionsUnionofSpacesMulti-ResolutionExpansion
Wavele
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 店铺共享协议书合同
- 服装联营合同协议书模板
- 街区绿化合同协议书
- 大棚安全合同协议书
- 形婚协议书合同完整版
- 凉菜合同协议书
- 奶牛协议书合同书
- 闺蜜搞笑合同协议书
- 婚前合同协议书赡养
- 核心风声测试题及答案
- 统编历史七年级下册(2024版) 第一单元第4课-安史之乱与唐朝衰亡【课件】d
- 2025年吉林省延边州事业单位【综合岗】考前冲刺历年高频重点模拟试卷提升(共500题附带答案详解)
- 刷单合同范例
- 校园防灾减灾培训
- 2025年中天合创能源有限责任公司招聘笔试参考题库含答案解析
- 机泵基础知识
- 第22课 世界多极化与经济全球化 说课稿-2023-2024学年高中历史统编版(2019)必修中外历史纲要下
- 四渡赤水(课件)
- 2025年中国成都市酒店行业市场调研分析及投资战略规划报告
- 《安装施工管理》课件
- 刺杀操培训课件
评论
0/150
提交评论