版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DigitalImageProcessingWaveletandMultiresolutionProcessing
MultiresolutionAnalysisManysignalsorimagescontainfeaturesatvariouslevelsofdetail(i.e.,scales). Smallsizeobjectsshouldbeexaminedatahigh
resolution.Largesizeobjectsshouldbeexaminedatalow
resolution.MultiresolutionAnalysis(cont’d)Localimagestatisticsarequitedifferentfromglobalimagestatistics.Modelingentireimageisdifficultorimpossible.Needtoanalyzeimagesatmultiplelevelsofdetail.Transform:AmathematicaloperationthattakesafunctionorsequenceandmapsitintoanotheroneTransformsaregoodthingsbecause…Thetransformofafunctionmaygiveadditional/hiddeninformationabouttheoriginalfunction,whichmaynotbeavailable/obviousotherwiseThetransformofanequationmaybeeasiertosolvethantheoriginalequationThetransformofafunction/sequencemayrequirelessstorage,henceprovidedatacompression/reductionAnoperationmaybeeasiertoapplyonthetransformedfunction,ratherthantheoriginalfunction(recallconvolution)Introduction(RobiPolikar,RowanUniversity)
WhatisaTransformandWhydoWeNeedOne?Mostusefultransformsare:Linear:wecanpulloutconstants,andapplysuperpositionOne-to-one:differentfunctionshavedifferenttransformsInvertible:foreachtransformT,thereisaninversetransformT-1usingwhichtheoriginalfunctionfcanberecovered(kindof–sortoftheundobutton…)Continuoustransform:mapfunctionstofunctionsDiscretetransform:mapsequencestosequencesTfFT-1fIntroduction
PropertiesofTransformsComplexfunctionrepresentationthroughsimplebuildingblocksCompressedrepresentationthroughusingonlyafewblocks(calledbasisfunctions/kernels)Sinusoidsasbuildingblocks:FouriertransformFrequencydomainrepresentationofthefunctionIntroduction
WhatDoesaTransformLookLike?FourierseriesContinuousFouriertransformLaplacetransformDiscreteFouriertransformZ-transformIntroduction
WhatTransformsareAvailable?JeanB.JosephFourier(1768-1830)“Anarbitraryfunction,continuousorwithdiscontinuities,definedinafiniteintervalbyanarbitrarilycapriciousgraphcanalwaysbeexpressedasasumofsinusoids” J.B.J.FourierDecember,21,1807Introduction
FourierWho…?RecallthatFTusescomplexexponentials(sinusoids)asbuildingblocks.Foreachfrequencyofcomplexexponential,thesinusoidatthatfrequencyiscomparedtothesignal.Ifthesignalconsistsofthatfrequency,thecorrelationishighlargeFTcoefficients.Ifthesignaldoesnothaveanyspectralcomponentatafrequency,thecorrelationatthatfrequencyislow/zero,small/zeroFTcoefficient.Introduction
HowDoesFTWorkAnyway?Introduction
FTatWorkFFFIntroduction
FTatWorkFIntroduction
FTatWorkComplexexponentials(sinusoids)asbasisfunctions:FAnultrasonicA-scanusing1.5MHztransducer,sampledat10MHzIntroduction
FTatWorkFTidentifiesallspectralcomponentspresentinthesignal,howeveritdoesnotprovideanyinformationregardingthetemporal(time)localizationofthesecomponents.Why?StationarysignalsconsistofspectralcomponentsthatdonotchangeintimeallspectralcomponentsexistatalltimesnoneedtoknowanytimeinformationFTworkswellforstationarysignalsHowever,non-stationarysignalsconsistsoftimevaryingspectralcomponentsHowdowefindoutwhichspectralcomponentappearswhen?FTonlyprovideswhatspectralcomponentsexist
,notwhereintimetheyarelocated.NeedsomeotherwaystodeterminetimelocalizationofspectralcomponentsIntroduction
StationaryandNon-stationarySignalsStationarysignals’spectralcharacteristicsdonotchangewithtimeNon-stationarysignalshavetimevaryingspectraConcatenationIntroduction
StationaryandNon-stationarySignals5Hz25Hz50HzPerfectknowledgeofwhatfrequenciesexist,butnoinformationaboutwherethesefrequenciesarelocatedintimeIntroduction
Non-stationarySignalsComplexexponentialsstretchouttoinfinityintimeTheyanalyzethesignalglobally,notlocallyHence,FTcanonlytellwhatfrequenciesexistintheentiresignal,butcannottell,atwhattimeinstancesthesefrequenciesoccurInordertoobtaintimelocalization
ofthespectralcomponents,thesignalneedtobeanalyzedlocally,BUTHOW?Introduction
FTShortcomingsChooseawindowfunctionoffinitelengthPutthewindowontopofthesignalatt=0TruncatethesignalusingthiswindowComputetheFTofthetruncatedsignal,save.SlidethewindowtotherightbyasmallamountGotostep3,untilwindowreachestheendofthesignalForeachtimelocationwherethewindowiscentered,weobtainadifferentFTHence,eachFTprovidesthespectralinformationofaseparatetime-sliceofthesignal,providingsimultaneoustimeandfrequencyinformationIntroduction
ShortTimeFourierTransform(STFT)Introduction
ShortTimeFourierTransform(STFT)STFTofsignalx(t):Computedforeachwindowcenteredatt=t’TimeparameterFrequencyparameterSignaltobeanalyzedWindowingfunctionWindowingfunctioncenteredatt=t’FTKernel(basisfunction)Introduction
ShortTimeFourierTransform(STFT)0100200300-1.5-1-0.500.510100200300-1.5-1-0.500.510100200300-1.5-1-0.500.510100200300-1.5-1-0.500.51WindowedsinusoidallowsFTtobecomputedonlythroughthesupportofthewindowingfunctionIntroduction
STFTatWorkIntroduction
STFT300Hz200Hz100Hz50HzSTFTprovidesthetimeinformationbycomputingadifferentFTsforconsecutivetimeintervals,andthenputtingthemtogetherTime-FrequencyRepresentation(TFR)Maps1-Dtimedomainsignalsto2-Dtime-frequencysignalsConsecutivetimeintervalsofthesignalareobtainedbytruncatingthesignalusingaslidingwindowingfunctionHowtochoosethewindowingfunction?Whatshape?Rectangular,Gaussian,Elliptic…?Howwide?Introduction
STFTTwoextremecases:W(t)infinitelylong:
STFTturnsintoFT,providingexcellentfrequencyinformation(goodfrequencyresolution),butnotimeinformationW(t)infinitelyshort:
STFTthengivesthetimesignalback,withaphasefactor.Excellenttimeinformation(goodtimeresolution),butnofrequencyinformationIntroduction
SelectionofSTFTWindowWideanalysiswindowpoortimeresolution,goodfrequencyresolutionNarrowanalysiswindowgoodtimeresolution,poorfrequencyresolutionOncethewindowischosen,theresolutionissetforbothtimeandfrequency.Timeresolution:HowwelltwospikesintimecanbeseparatedfromeachotherinthetransformdomainFrequencyresolution:HowwelltwospectralcomponentscanbeseparatedfromeachotherinthetransformdomainBothtimeandfrequencyresolutionscannotbearbitrarilyhigh!!!
Wecannotpreciselyknowatwhattimeinstanceafrequencycomponentislocated.WecanonlyknowwhatintervaloffrequenciesarepresentinwhichtimeintervalsIntroduction
HeisenbergUncertaintyPrincipleIntroduction
STFTGaussianwindowfunction:a=0.01a=0.0001a=0.00001OvercomesthepresetresolutionproblemoftheSTFTbyusingavariablelengthwindowAnalysiswindowsofdifferentlengthsareusedfordifferentfrequencies:AnalysisofhighfrequenciesUsenarrowerwindowsforbettertimeresolutionAnalysisoflowfrequenciesUsewiderwindowsforbetterfrequencyresolutionThisworkswell,ifthesignaltobeanalyzedmainlyconsistsofslowlyvaryingcharacteristicswithoccasionalshorthighfrequencybursts.Heisenbergprinciplestillholds!!!Thefunctionusedtowindowthesignaliscalledthewavelet
Introduction
WaveletTransformContinuouswavelettransformofthesignalx(t)usingtheanalysiswavelet(.)Translationparameter,measureoftimeScaleparameter,measureoffrequencyThemotherwavelet.Allkernelsareobtainedbytranslating(shifting)and/orscalingthemotherwaveletAnormalizationconstantSignaltobeanalyzedScale=1/frequencyIntroduction
WaveletTransformHighfrequency(smallscale)Lowfrequency(largescale)Introduction
WTatWorkIntroduction
WTatWorkIntroduction
WTatWorkIntroduction
WTatWorkIntroduction
TimeandFrequencyResolutionBackgroundImagePyramidsComputeareduced-resolutionapproximationoftheinputimageFiltering(Averaging,Gaussian)Down-samplingUp-sampletheoutputofthepreviousbyafactor2Computethedifferencebetweenthepredictionofstep2andtheinputto
Step1.ImagePyramidsImagePyramidsInMulti-resolutionAnalysis(MRA),aScalingFunctionisusedtocreateaseriesofapproximationsofafunctionorimage,eachdifferingbyafactor2fromitsnearestneighboringapproximations.Additionalfunctions,calledWavelet,areusedtoencodethedifferenceininformationbetweenadjacentapproximationMulti-ResolutionExpansionMulti-ResolutionExpansion
SeriesExpansionReal-valuedexpansioncoefficientsReal-valuedexpansionfunctionsIftheexpansionisUNIQUE-thatis,thereisonlyonesetofforanygiven-thearecalledbasisfunctions,andtheexpansionset,,iscalledaBASISfortheclassoffunctionsthatcanbesoexpressed.TheexpressiblefunctionsformafunctionspacethatisreferredtoastheclosespanoftheexpansionsetMulti-ResolutionExpansion
SeriesExpansionDualFunctionsMulti-ResolutionExpansion
SeriesExpansionCASE1:ExpansionfunctionsformanorthonormalbasisCASE2:Expansionfunctionsarenotorthonormal,butareanorthogonalbasis(biorthogonalbasis)CASE3:ExpansionsetisnotabasisMulti-ResolutionExpansion
ScalingFunctionsMulti-ResolutionExpansion
ScalingFunctionsThescalingfunctionsisORTHOGONALtoitsintegertranslations.Thesubspacespannedbythescalingfunctionatlowscalesarenestedwithinthosespannedathigherscales.TheonlyfunctionthatiscommontoallVj
is
f(x)=0AnyfunctioncanberepresentedwitharbitraryprecisionMulti-ResolutionExpansion
MRARequirementsMulti-ResolutionExpansion
MRARequirementsScalingVectorMulti-ResolutionExpansion
WaveletFunctionsUnionofSpacesMulti-ResolutionExpansion
Wavele
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年大学《碳储科学与工程-碳运输与封存技术》考试模拟试题及答案解析
- 2025年大学《医疗产品管理-医疗产品分类与技术》考试备考题库及答案解析
- 信息化专员工作计划与系统维护方案
- 产品运营推广方案美妆品牌
- 2025年大学《飞行器质量与可靠性-飞行器质量与可靠性概论》考试备考题库及答案解析
- 医疗器械技术及应用培训资料
- 2025年大学《交叉工程-交叉工程案例分析(实际项目拆解与优化)》考试备考试题及答案解析
- 2025年大学《纳米材料与技术-纳米材料制备技术》考试备考题库及答案解析
- 2025年大学《咖啡科学与工程-咖啡烘焙技术》考试备考题库及答案解析
- 2025年大学《纪检监察-党的纪律检查制度》考试备考题库及答案解析
- 【核心素养目标】Unit 3 My School Section B (1a-1d)公开课一等奖创新教学设计 人教英语七年级上册
- 家政服务员清洁家居课件
- 2025年人工智能算法工程师校招笔试模拟题及答案解析
- 2024新版2025秋八年级上册历史全册教案教学设计含大单元整体教学设计
- 第二十一课 让身体保持最佳状态说课稿-2025-2026学年初中心理健康北师大版2013九年级下册-北师大版2013
- 2025版实习生实习期间责任保险合同范本
- 2025年高考《政治与法治》高频考点分析与备考策略
- 2025年南京保安考试题库
- 口腔颌面外科损伤
- 学堂在线 临床中成药应用 章节测试答案
- GB 2536-2025电工流体变压器和开关用的未使用过的矿物绝缘油
评论
0/150
提交评论