




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省唐山市五校高三下学期开学暑假验收考试数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列是公比为的等比数列,且,若数列是递增数列,则的取值范围为()A. B. C. D.2.若函数的图象如图所示,则的解析式可能是()A. B. C. D.3.对于函数,若满足,则称为函数的一对“线性对称点”.若实数与和与为函数的两对“线性对称点”,则的最大值为()A. B. C. D.4.若向量,则()A.30 B.31 C.32 D.335.甲乙丙丁四人中,甲说:我年纪最大,乙说:我年纪最大,丙说:乙年纪最大,丁说:我不是年纪最大的,若这四人中只有一个人说的是真话,则年纪最大的是()A.甲 B.乙 C.丙 D.丁6.若,则的虚部是()A. B. C. D.7.已知等差数列的公差不为零,且,,构成新的等差数列,为的前项和,若存在使得,则()A.10 B.11 C.12 D.138.若实数满足不等式组则的最小值等于()A. B. C. D.9.已知双曲线的左,右焦点分别为、,过的直线l交双曲线的右支于点P,以双曲线的实轴为直径的圆与直线l相切,切点为H,若,则双曲线C的离心率为()A. B. C. D.10.设集合,,则().A. B.C. D.11.已知函数fx=sinωx+π6+A.16,13 B.112.党的十九大报告明确提出:在共享经济等领域培育增长点、形成新动能.共享经济是公众将闲置资源通过社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知盒中有2个红球,2个黄球,且每种颜色的两个球均按,编号,现从中摸出2个球(除颜色与编号外球没有区别),则恰好同时包含字母,的概率为________.14.已知双曲线-=1(a>0,b>0)与抛物线y2=8x有一个共同的焦点F,两曲线的一个交点为P,若|FP|=5,则点F到双曲线的渐近线的距离为_____.15.设f(x)=etx(t>0),过点P(t,0)且平行于y轴的直线与曲线C:y=f(x)的交点为Q,曲线C过点Q的切线交x轴于点R,若S(1,f(1)),则△PRS的面积的最小值是_____.16.在直三棱柱内有一个与其各面都相切的球O1,同时在三棱柱外有一个外接球.若,,,则球的表面积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,平面平面,.(Ⅰ)求证:平面;(Ⅱ)若锐二面角的余弦值为,求直线与平面所成的角.18.(12分)已知数列{an}的各项均为正,Sn为数列{an}的前n项和,an2+2an=4Sn+1.(1)求{an}的通项公式;(2)设bn,求数列{bn}的前n项和.19.(12分)已知直线:与抛物线切于点,直线:过定点Q,且抛物线上的点到点Q的距离与其到准线距离之和的最小值为.(1)求抛物线的方程及点的坐标;(2)设直线与抛物线交于(异于点P)两个不同的点A、B,直线PA,PB的斜率分别为,那么是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.20.(12分)如图,四棱锥的底面ABCD是正方形,为等边三角形,M,N分别是AB,AD的中点,且平面平面ABCD.(1)证明:平面PNB;(2)问棱PA上是否存在一点E,使平面DEM,求的值21.(12分)如图所示的几何体中,,四边形为正方形,四边形为梯形,,,,为中点.(1)证明:;(2)求二面角的余弦值.22.(10分)2018年反映社会现实的电影《我不是药神》引起了很大的轰动,治疗特种病的创新药研发成了当务之急.为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品的研发费用(百万元)和销量(万盒)的统计数据如下:研发费用(百万元)2361013151821销量(万盒)1122.53.53.54.56(1)求与的相关系数精确到0.01,并判断与的关系是否可用线性回归方程模型拟合?(规定:时,可用线性回归方程模型拟合);(2)该药企准备生产药品的三类不同的剂型,,,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测.第一次检测时,三类剂型,,合格的概率分别为,,,第二次检测时,三类剂型,,合格的概率分别为,,.两次检测过程相互独立,设经过两次检测后,,三类剂型合格的种类数为,求的数学期望.附:(1)相关系数(2),,,.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
先根据已知条件求解出的通项公式,然后根据的单调性以及得到满足的不等关系,由此求解出的取值范围.【详解】由已知得,则.因为,数列是单调递增数列,所以,则,化简得,所以.故选:D.【点睛】本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据之间的大小关系分析问题.2、A【解析】
由函数性质,结合特殊值验证,通过排除法求得结果.【详解】对于选项B,为奇函数可判断B错误;对于选项C,当时,,可判断C错误;对于选项D,,可知函数在第一象限的图象无增区间,故D错误;故选:A.【点睛】本题考查已知函数的图象判断解析式问题,通过函数性质及特殊值利用排除法是解决本题的关键,难度一般.3、D【解析】
根据已知有,可得,只需求出的最小值,根据,利用基本不等式,得到的最小值,即可得出结论.【详解】依题意知,与为函数的“线性对称点”,所以,故(当且仅当时取等号).又与为函数的“线性对称点,所以,所以,从而的最大值为.故选:D.【点睛】本题以新定义为背景,考查指数函数的运算和图像性质、基本不等式,理解新定义含义,正确求出的表达式是解题的关键,属于中档题.4、C【解析】
先求出,再与相乘即可求出答案.【详解】因为,所以.故选:C.【点睛】本题考查了平面向量的坐标运算,考查了学生的计算能力,属于基础题.5、C【解析】
分别假设甲乙丙丁说的是真话,结合其他人的说法,看是否只有一个说的是真话,即可求得年纪最大者,即可求得答案.【详解】①假设甲说的是真话,则年纪最大的是甲,那么乙说谎,丙也说谎,而丁说的是真话,而已知只有一个人说的是真话,故甲说的不是真话,年纪最大的不是甲;②假设乙说的是真话,则年纪最大的是乙,那么甲说谎,丙说真话,丁也说真话,而已知只有一个人说的是真话,故乙说谎,年纪最大的也不是乙;③假设丙说的是真话,则年纪最大的是乙,所以乙说真话,甲说谎,丁说的是真话,而已知只有一个人说的是真话,故丙在说谎,年纪最大的也不是乙;④假设丁说的是真话,则年纪最大的不是丁,而已知只有一个人说的是真话,那么甲也说谎,说明甲也不是年纪最大的,同时乙也说谎,说明乙也不是年纪最大的,年纪最大的只有一人,所以只有丙才是年纪最大的,故假设成立,年纪最大的是丙.综上所述,年纪最大的是丙故选:C.【点睛】本题考查合情推理,解题时可从一种情形出发,推理出矛盾的结论,说明这种情形不会发生,考查了分析能力和推理能力,属于中档题.6、D【解析】
通过复数的乘除运算法则化简求解复数为:的形式,即可得到复数的虚部.【详解】由题可知,所以的虚部是1.故选:D.【点睛】本题考查复数的代数形式的混合运算,复数的基本概念,属于基础题.7、D【解析】
利用等差数列的通项公式可得,再利用等差数列的前项和公式即可求解.【详解】由,,构成等差数列可得即又解得:又所以时,.故选:D【点睛】本题考查了等差数列的通项公式、等差数列的前项和公式,需熟记公式,属于基础题.8、A【解析】
首先画出可行域,利用目标函数的几何意义求的最小值.【详解】解:作出实数,满足不等式组表示的平面区域(如图示:阴影部分)由得,由得,平移,易知过点时直线在上截距最小,所以.故选:A.【点睛】本题考查了简单线性规划问题,求目标函数的最值先画出可行域,利用几何意义求值,属于中档题.9、A【解析】
在中,由余弦定理,得到,再利用即可建立的方程.【详解】由已知,,在中,由余弦定理,得,又,,所以,,故选:A.【点睛】本题考查双曲线离心率的计算问题,处理双曲线离心率问题的关键是建立三者间的关系,本题是一道中档题.10、D【解析】
根据题意,求出集合A,进而求出集合和,分析选项即可得到答案.【详解】根据题意,则故选:D【点睛】此题考查集合的交并集运算,属于简单题目,11、A【解析】
将fx整理为3sinωx+π3,根据x的范围可求得ωx+π3∈π【详解】f当x∈0,π时,又f0=3sin由fx在0,π上的值域为32解得:ω∈本题正确选项:A【点睛】本题考查利用正弦型函数的值域求解参数范围的问题,关键是能够结合正弦型函数的图象求得角的范围的上下限,从而得到关于参数的不等式.12、D【解析】根据四个列联表中的等高条形图可知,图中D中共享与不共享的企业经济活跃度的差异最大,它最能体现共享经济对该部门的发展有显著效果,故选D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据组合数得出所有情况数及两个球颜色不相同的情况数,让两个球颜色不相同的情况数除以总情况数即为所求的概率.【详解】从袋中任意地同时摸出两个球共种情况,其中有种情况是两个球颜色不相同;故其概率是故答案为:.【点睛】本题主要考查了求事件概率,解题关键是掌握概率的基础知识和组合数计算公式,考查了分析能力和计算能力,属于基础题.14、【解析】
设点为,由抛物线定义知,,求出点P坐标代入双曲线方程得到的关系式,求出双曲线的渐近线方程,利用点到直线的距离公式求解即可.【详解】由题意得F(2,0),因为点P在抛物线y2=8x上,|FP|=5,设点为,由抛物线定义知,,解得,不妨取P(3,2),代入双曲线-=1,得-=1,又因为a2+b2=4,解得a=1,b=,因为双曲线的渐近线方程为,所以双曲线的渐近线为y=±x,由点到直线的距离公式可得,点F到双曲线的渐近线的距离.故答案为:【点睛】本题考查双曲线和抛物线方程及其几何性质;考查运算求解能力和知识迁移能力;灵活运用双曲线和抛物线的性质是求解本题的关键;属于中档题、常考题型.15、【解析】
计算R(t,0),PR=t﹣(t),△PRS的面积为S,导数S′,由S′=0得t=1,根据函数的单调性得到最值.【详解】∵PQ∥y轴,P(t,0),∴Q(t,f(t))即Q(t,),又f(x)=etx(t>0)的导数f′(x)=tetx,∴过Q的切线斜率k=t,设R(r,0),则k,∴r=t,即R(t,0),PR=t﹣(t),又S(1,f(1))即S(1,et),∴△PRS的面积为S,导数S′,由S′=0得t=1,当t>1时,S′>0,当0<t<1时,S′<0,∴t=1为极小值点,也为最小值点,∴△PRS的面积的最小值为.故答案为:.【点睛】本题考查了利用导数求面积的最值问题,意在考查学生的计算能力和应用能力.16、【解析】
先求出球O1的半径,再求出球的半径,即得球的表面积.【详解】解:,,,,设球O1的半径为,由题得,所以棱柱的侧棱为.由题得棱柱外接球的直径为,所以外接球的半径为,所以球的表面积为.故答案为:【点睛】本题主要考查几何体的内切球和外接球问题,考查球的表面积的计算,意在考查学生对这些知识的理解掌握水平,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)详见解析;(Ⅱ).【解析】
(Ⅰ)由余弦定理解得,即可得到,由面面垂直的性质可得平面,即可得到,从而得证;(Ⅱ)在平面中,过点作于点,则平面,如图所示建立空间直角坐标系,设,其中,利用空间向量法得到二面角的余弦,即可得到的关系,从而得解;【详解】解:(Ⅰ)证明:在中,,解得,则,从而因为平面平面,平面平面所以平面,又因为平面,所以,因为,,平面,平面,所以平面;(Ⅱ)解:在平面中,过点作于点,则平面,如图所示建立空间直角坐标系,设,其中,则设平面的法向量为,则,即,令,则又平面的一个法向量,则从而,故则直线与平面所成的角为,大小为.【点睛】本题考查线面垂直的判定,面面垂直的性质定理的应用,利用空间向量法解决立体几何问题,属于中档题.18、(1)an=2n+1;(2)2.【解析】
(1)根据题意求出首项,再由(an+12+2an+1)﹣(an2+2an)=4an+1,求得该数列为等差数列即可求得通项公式;(2)利用错位相减法进行数列求和.【详解】(1)∵an2+2an=4Sn+1,∴a12+2a1=4S1+1,即,解得:a1=1或a1=﹣1(舍),又∵an+12+2an+1=4Sn+1+1,∴(an+12+2an+1)﹣(an2+2an)=4an+1,整理得:(an+1﹣an)(an+1+an)=2(an+1+an),又∵数列{an}的各项均为正,∴an+1﹣an=2,∴数列{an}是首项为1、公差为2的等差数列,∴数列{an}的通项公式an=1+2(n﹣1)=2n+1;(2)由(1)可知bn,记数列{bn}的前n项和为Tn,则Tn=1•5•(2n+1)•,Tn=1•5••…+(2n﹣1)•(2n+1)•,错位相减得:Tn=1+2(•)﹣(2n+1)•=1+2,∴Tn()=2.【点睛】此题考查求等差数列的基本量,根据递推关系判定等差数列,根据错位相减进行数列求和,关键在于熟记方法准确计算.19、(1),(1,2);(2)存在,【解析】
(1)由直线恒过点点及抛物线C上的点到点Q的距离与到准线的距离之和的最小值为,求出抛物线的方程,再由直线与抛物线相切,即可求得切点的坐标;(2)直线与抛物线方程联立,利用根与系数的关系,求得直线PA,PB的斜率,求出斜率之和为定值,即存在实数使得斜率之和为定值.【详解】(1)由题意,直线变为2x+1-m(2y+1)=0,所以定点Q的坐标为抛物线的焦点坐标,由抛物线C上的点到点Q的距离与到其焦点F的距离之和的最小值为,可得,解得或(舍去),故抛物线C的方程为又由消去y得,因为直线与抛物线C相切,所以,解得,此时,所以点P坐标为(1,2)(2)设存在满足条件的实数,点,联立,消去x得,则,依题意,可得,解得m<-1或,由(1)知P(1,2),可得,同理可得,所以=,故存在实数=满足条件.【点睛】本题主要考查抛物线方程的求解、及直线与圆锥曲线的位置关系的综合应用,解答此类题目,通常联立直线方程与抛物线方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.20、(1)证明见解析;(2)存在,.【解析】
(1)根据题意证出,,再由线面垂直的判定定理即可证出.(2)连接AC交DM于点Q,连接EQ,利用线面平行的性质定理可得,从而可得,在正方形ABCD中,由即可求解.【详解】(1)证明:在正方形ABCD中,M,N分别是AB,AD的中点,∴,,.∴.∴.又,∴,∴.∵为等边三角形,N是AD的中点,∴.又平面平面ABCD,平面PAD,平面平面,∴平面ABCD.又平面ABCD,∴.∵平面PNB,,∴平面PNB.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年石材翻新养护剂项目市场调查研究报告
- 电凝钳企业数字化转型与智慧升级战略研究报告
- 灵芝孢子粉即溶粉行业深度调研及发展战略咨询报告
- 特色干货线上商城行业跨境出海战略研究报告
- 商业健康保险服务企业数字化转型与智慧升级战略研究报告
- 智能咖啡机除垢剂企业制定与实施新质生产力战略研究报告
- 智能灯光色彩管理行业跨境出海战略研究报告
- 智能感应夜灯小夜灯行业跨境出海战略研究报告
- 智能手环运动模式自动识别行业深度调研及发展战略咨询报告
- 烹饪菜谱创新机器人行业深度调研及发展战略咨询报告
- 任务一淘米(教学课件)一年级下册劳动技术(人美版)
- 顶管机租凭合同协议
- 中招美育考试试题及答案
- 2025年湖南中考英命题分析及复习备考策略指导课件
- 四年级下册英语竞赛试题
- 低空空域经济中高技能人才的培养路径与市场分析
- 湖北省武汉市2025届高中毕业生四月调研考试语文试卷及答案(武汉四调)
- 4.1.2-元素周期表-课件 高一上学期化学人教版(2019)必修第一册
- 中华人民共和国能源法
- 数学中考复习:一次函数与反比例函数综合课件
- 2022年《科学》新课标《义务教育科学课程标准(2022年版)》全文学习2022年新版义务教育科学课程标准(2022年版)课件
评论
0/150
提交评论