




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届上海华东师大三附中高二上数学期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知则是的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知点是椭圆上一点,点,则的最小值为A. B.C. D.3.若函数在上为单调增函数,则m的取值范围()A. B.C. D.4.集合,,则()A. B.C. D.5.过坐标原点作直线的垂线,垂足为,则的取值范围是()A. B.C. D.6.如图,在平行六面体中,底面是边长为的正方形,若,且,则的长为()A. B.C. D.7.若数列{an}满足……,则称数列{an}为“半差递增”数列.已知“半差递增”数列{cn}的前n项和Sn满足,则实数t的取值范围是()A. B.(-∞,1)C. D.(1,+∞)8.双曲线的离心率是,则双曲线的渐近线方程是()A. B.C. D.9.函数,则不等式的解集是()A. B.C. D.10.已知函数的导数为,则等于()A.0 B.1C.2 D.411.圆与圆的位置关系是()A.外离 B.外切C.相交 D.内切12.已知,若与的展开式中的常数项相等,则()A.1 B.3C.6 D.9二、填空题:本题共4小题,每小题5分,共20分。13.已知为抛物线的焦点,为抛物线上的任意一点,点,则的最小值为______.14.若直线与平行,则实数________.15.两个人射击,互相独立.已知甲射击一次中靶概率是0.6,乙射击一次中靶概率是0.3,现在两人各射击一次,中靶至少一次就算完成目标,则完成目标的概率为_____________16.用1,2,3,4,5组成没有重复数字的五位数,其中个位小于百位且百位小于万位的五位数有n个,则的展开式中,的系数是___________.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线恒过抛物线的焦点F(1)求抛物线的方程;(2)若直线与抛物线交于A,B两点,且,求直线的方程18.(12分)已知两动圆:和:,把它们的公共点的轨迹记为曲线,若曲线与轴的正半轴的交点为,取曲线上的相异两点、满足:且点与点均不重合.(1)求曲线的方程;(2)证明直线恒经过一定点,并求此定点的坐标;19.(12分)2017年国家提出乡村振兴战略目标:2020年取得重要进展,制度框架和政策体系基本形成;2035年取得决定性进展,农业农村现代化基本实现;2050年乡村全面振兴,农业强、农村美、农民富全面实现.某地为实现乡村振兴,对某农产品加工企业调研得到该企业2012年到2020年盈利情况:年份201220132014201520162017201820192020年份代码x123456789盈利y(百万)6.06.16.26.06.46.96.87.17.0(1)根据表中数据判断年盈利y与年份代码x是否具有线性相关性;(2)若年盈利y与年份代码x具有线性相关性,求出线性回归方程并根据所求方程预测该企业2021年年盈利(结果保留两位小数)参考数据及公式:,,,,,统计中用相关系数r来衡量变量y,x之间的线性关系的强弱,当时,变量y,x线性相关20.(12分)已知正项等差数列满足:,且,,成等比数列(1)求的通项公式;(2)设的前n项和为,且,求的前n项和21.(12分)经观测,某种昆虫的产卵数y与温度x有关,现将收集到的温度和产卵数的10组观测数据作了初步处理,得到如下图的散点图及一些统计量表.275731.121.71502368.3630表中,(1)根据散点图判断,与哪一个适宜作为y与x之间的回归方程模型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据.试求y关于x回归方程.附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,.22.(10分)如图,AC是圆O的直径,B是圆O上异于A,C的一点,平面ABC,点E在棱PB上,且,,.(1)求证:;(2)当三棱锥的体积最大时,求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先解不等式,再比较集合包含关系确定选项.【详解】因为,所以是的充分不必要条件,选A.【点睛】本题考查解含绝对值不等式、解一元二次不等式以及充要关系判定,考查基本分析求解能力,属基础题.2、D【解析】设,则,.所以当时,的最小值为.故选D.3、B【解析】用函数单调性确定参数,使用参数分离法即可.【详解】,在上是增函数,即恒成立,;设,;∴时,是增函数;时,是减函数;故时,,∴;故选:B.4、A【解析】先解不等式求得集合再求交集.【详解】解不等式得:,则有,解不等式,解得或,则有或,所以为.故选:A.5、D【解析】求出直线直线过的定点A,由题意可知垂足是落在以OA为直径的圆上,由此可利用的几何意义求得答案,【详解】直线,即,令,解得,即直线过定点,由过坐标原点作直线的垂线,垂足为,可知:落在以OA为直径的圆上,而以OA为直径的圆为,如图示:故可看作是圆上的点到原点距离的平方,而圆过原点,圆上点到原点的最远距离为,但将原点坐标代入直线中,不成立,即直线l不过原点,所以不可能和原点重合,故,故选:D6、D【解析】由向量线性运算得,利用数量积的定义和运算律可求得,由此可求得.【详解】由题意得:,,且,又,,,,.故选:D.7、A【解析】根据,利用递推公式求得数列的通项公式.再根据新定义的意义,代入解不等式即可求得实数的取值范围.【详解】因为所以当时,两式相减可得,即,所以数列是以公比的等比数列当时,所以,则由“差半递增”数列的定义可知化简可得解不等式可得即实数的取值范围为故选:A.8、B【解析】利用双曲线的离心率,以及渐近线中,关系,结合找关系即可【详解】解:,又因为在双曲线中,,所以,故,所以双曲线的渐近线方程为,故选:B9、A【解析】利用导数判断函数单调递增,然后进行求解.【详解】对函数进行求导:,因为,,所以,因为,所以f(x)是奇函数,所以在R上单调递增,又因为,所以的解集为.故选:A10、A【解析】先对函数求导,然后代值计算即可【详解】因为,所以.故选:A11、C【解析】利用圆心距与半径的关系确定正确选项.【详解】圆的圆心为,半径为,圆的圆心为,半径为,圆心距为,,所以两圆相交.故选:C12、B【解析】根据二项展开式的通项公式即可求出【详解】的展开式中的常数项为,而的展开式中的常数项为,所以,又,所以故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由抛物线的几何性质知:,由图知为的最小值,求长度即可.【详解】点是抛物线的焦点,其准线方程为,作于,作于,∴,当且仅当为与抛物线的交点时取得等号,∴的最小值为.故答案为:.14、【解析】根据两直线平行可得出关于实数的等式与不等式,即可解得实数的值.【详解】因为,则,解得.故答案为:.15、72【解析】利用独立事件的概率乘法公式和对立事件的概率公式可求得所求事件的概率.【详解】由题意可知,若甲、乙两个各射击1次,至少有一人命中目标的概率为.故答案为:16、2022【解析】根据排列和组合计数公式求出,然后利用二项式定理进行求解即可【详解】解:用1,2,3,4,5组成没有重复数字的五位数中,满足个位小于百位且百位小于万位的五位数有个,即,当时,,则系数是,故答案为:2022三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)把直线化为,得到抛物线的焦点为,求得,即可求得抛物线的方程;(2)联立方程组,得到,,结合,列出方程求得的值,即可求得直线的方程【小问1详解】解:将直线化为,可得直线恒过点,即抛物线的焦点为,所以,解得,所以抛物线的方程为【小问2详解】解:由题意显然,联立方程组,整理得,设,,则,,因为,所以,解得,所以或,所以直线的方程为或18、(1);(2)证明见解析,.【解析】(1)设两动圆的公共点为,则有,运用椭圆的定义,即可得到,,,进而得到的轨迹方程;(2),设,,,,设出直线方程,联立方程组,利用韦达定理法及向量的数量积的坐标表示,即可得到定点.【小问1详解】设两动圆的公共点为,则有由椭圆的定义可知的轨迹为椭圆,设方程为,则,,所以曲线的方程是:【小问2详解】由题意可知:,且直线斜率存在,设,,设直线:,联立方程组,可得,,,因为,所以有,把代入整理化简得,或舍,因为点与点均不重合,所以直线恒过定点19、(1)年盈利y与年份代码x具有线性相关性(2),7.25百万元【解析】(1)根据表中的数据和提供的公式计算即可;(2)先求线性回归方程,再代入计算即可【小问1详解】由表中的数据得,,,,因为,所以年盈利y与年份代码x具有线性相关性【小问2详解】,,,当时,,该企业2021年年盈利约为7.25百万元20、(1);(2).【解析】(1)利用等差数列的通项公式结合条件即求;(2)利用条件可得,然后利用错位相减法即求.【小问1详解】设等差数列公差为d,由得,即,化简得,又,,成等比数列,则,即,将代入上式得,化简得,解得或-2(舍去),则,所以【小问2详解】∵,当时,,当时,,符合上式,则,所以,令,则,,∴,化简得综上,的前n项和21、(1)(2)【解析】(1)根据散点图看出样本点分布在一条指数函数的周围,即可判断;(2)令,利用最小二乘法即可求出y关于x的线性回归方程.【小问1详解】根据散点图判断,看出样本点分布在一条指数函数的周围,所以适宜作为y与x之间的回归方程模型;【小问2详解】令,则,;,∴;∴y关于x的回归方程为.22、(1)证明见解析(2)【解析】(1)由圆的性质可得,再由线面垂直的性质可得,从而由线面垂直的判定定理可得平面PAB,所以得,再结合已知条件可得平面PBC,由线面垂直的性质可得结论;(2)由已知条件结合基本不等式可得当三棱锥的体积最大时,是等腰直角三角形,,从而以OB,OC所在直线分别为x轴,y轴,以过点O且垂直于圆O平面的直线为z轴建立如图所示的空间直角坐标系,利用空间向量求解.【小问1详解】证明:因为AC是圆O的直径,点B是圆O上不与A,C重合的一个动点,所以.因为平面ABC,平面ABC,所以.因为,且AB,平面PAB,所以平面PAB.因为平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 行政法学与决策科学的结合试题及答案
- 信息处理技术员应试经验与试题及答案
- 生产部火灾应急预案模板(3篇)
- 行政管理的内外部环境影响分析试题及答案
- 汽机火灾事故应急预案(3篇)
- 企业澡堂火灾应急预案(3篇)
- 行政法与科技监管的关系试题及答案
- 计算机与人工智能结合考题及答案
- 网络管理员考试热点话题试题及答案
- 网络管理员的新挑战与机会试题及答案
- 我的教育故事
- 《有机化学:糖》课件
- 智慧果园系统构建与应用
- TJSHLW 001-2024 土壤修复管控工程全过程监管数据接入规范
- 2024年全国职业院校技能大赛高职组(检验检疫技术赛项)考试题库(含答案)
- 2023年广东广州中考满分作文《一样的舞台不一样的我》
- 2024-2030年中国商用显示产业投资策略及发展规划建议研究研究报告
- (完整)北京版小学英语1至6年级词汇(带音标)
- 中西文化鉴赏智慧树知到答案2024年郑州大学
- 职业技术学院《新能源汽车结构原理与维修》课程标准
- DL∕T 1901-2018 水电站大坝运行安全应急预案编制导则
评论
0/150
提交评论