




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广西桂林市、防城港市高一上数学期末质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.终边在x轴上的角的集合为()A. B.C. D.2.已知角与角的终边关于直线对称,且,则等于()A. B.C. D.3.若,,且,则A. B.C. D.4.某圆的一条弦长等于半径,则这条弦所对的圆心角为A. B.C. D.15.已知,若,则m的值为()A.1 B.C.2 D.46.已知函数,则不等式的解集为()A. B.C. D.7.设,且,则()A. B.C. D.8.已知函数的部分图像如图所示,则正数A值为()A. B.C. D.9.已知,,则下列不等式中恒成立的是()A. B.C. D.10.下列函数是奇函数,且在区间上是增函数的是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的单调增区间是__________12.已知直线与圆C:相交于A,B两点,则|AB|=____________13.若函数满足,则______14.已知某扇形的周长是,面积为,则该扇形的圆心角的弧度数是______.15.设是定义在上的函数,若存在两个不等实数,使得,则称函数具有性质,那么下列函数:①;②;③;具有性质的函数的个数为____________16.正三棱锥中,,则二面角的大小为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求的最小正周期;(2)当时,求的最小值以及取得最小值时的集合18.已知函数的图象中相邻两条对称轴之间的距离为,且直线是其图象的一条对称轴(1)求,的值;(2)在图中画出函数在区间上的图象;(3)将函数的图象上各点的横坐标缩短为原来的(纵坐标不变),再把得到的图象向左平移个单位,得到的图象,求单调减区间.19.若函数的自变量的取值范围为时,函数值的取值范围恰为,就称区间为的一个“和谐区间”.(1)先判断“函数没有“和谐区间”是否正确,再写出函数“和谐区间”;(2)若是定义在上的奇函数,当时,.(i)求的“和谐区间”;(ii)若函数的图象是在定义域内所有“和谐区间”上的图象,是否存在实数,使集合恰含有个元素,若存在,求出的取值范围;若不存在,请说明理由.20.已知函数为奇函数.(1)求的值;(2)探究在上的单调性,并用函数单调性的定义证明你的结论.21.已知直线l:与x轴交于A点,动圆M与直线l相切,并且和圆O:相外切求动圆圆心M的轨迹C的方程若过原点且倾斜角为的直线与曲线C交于M、N两点,问是否存在以MN为直径的圆过点A?若存在,求出实数m的值;若不存在,说明理由
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用任意角的性质即可得到结果【详解】终边在x轴上,可能为x轴正半轴或负半轴,所以可得角,故选B.【点睛】本题考查任意角的定义,属于基础题.2、A【解析】先在角终边取一点,利用角与角的终边关于直线对称写出对称点的坐标,即可求得,进而求得.【详解】由知角终边在第一或第二象限,在终边上取一点或,又角与角的终边关于直线对称,故角的终边必过点或,故,则.故选:A.3、A【解析】∵,∴2既是方程的解,又是方程的解令a是方程的另一个根,b是方程的另一个根由韦达定理可得:2×a=6,即a=3,∴2+a=p,∴p=52+b=−6,即b=−8,∴2×b=−16=−q,∴q=16∴p+q=21故选:A4、C【解析】直接利用已知条件,转化求解弦所对的圆心角即可.【详解】圆的一条弦长等于半径,故由此弦和两条半径构成的三角形是等边三角形,所以弦所对的圆心角为.故选C.【点睛】本题考查扇形圆心角的求法,是基本知识的考查.5、B【解析】依题意可得,列方程解出【详解】解:,,故选:6、D【解析】由题可得函数为偶函数,且在上为增函数,可得,然后利用余弦函数的性质即得.【详解】∵函数,定义域为R,∴,∴函数为偶函数,且在上为增函数,,∵,∴,即,又,∴.故选:D.7、C【解析】将等式变形后,利用二次根式的性质判断出,即可求出的范围.【详解】即故选:C【点睛】此题考查解三角函数方程,恒等变化后根据的关系即可求解,属于简单题目.8、B【解析】根据图象可得函数的周期,从而可求,再根据对称轴可求,结合图象过可求.【详解】由图象可得,故,而时,函数取最小值,故,故,而,故,因为图象过,故,故,故选:B.9、D【解析】直接利用特殊值检验及其不等式的性质判断即可.【详解】对于选项A,令,,但,则A错误;对于选项B,令,,但,则B错误;对于选项C,当时,,则C错误;对于选项D,有不等式的可加性得,则D正确,故选:D.10、B【解析】逐一考查所给函数的单调性和奇偶性即可.【详解】逐一考查所给函数的性质:A.,函数为奇函数,在区间上不具有单调性,不合题意;B.,函数为奇函数,在区间上是增函数,符合题意;C.,函数为非奇非偶函数,在区间上是增函数,不合题意;D.,函数为奇函数,在区间上不具有单调性,不合题意;本题选择B选项.【点睛】本题主要考查函数的单调性,函数的奇偶性等知识,意在考查学生的转化能力和计算求解能力.二、填空题:本大题共6小题,每小题5分,共30分。11、,【解析】分析:利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数化为,利用正弦函数的单调性解不等式,可得到函数的递增区间.详解:,,,由,计算得出,因此函数的单调递增区间为:,故答案为,.点睛:本题主要考查三角函数的单调性,属于中档题.函数的单调区间的求法:(1)代换法:①若,把看作是一个整体,由求得函数的减区间,求得增区间;②若,则利用诱导公式先将的符号化为正,再利用①的方法,或根据复合函数的单调性规律进行求解;(2)图象法:画出三角函数图象,利用图象求函数的单调区间.12、6【解析】先求圆心到直线的距离,再根据弦心距、半径、弦长的几何关系求|AB|.【详解】因为圆心C(3,1)到直线的距离,所以故答案为:613、【解析】根据题意,令,结合指数幂的运算,即可求解.【详解】由题意,函数满足,令,可得.故答案为:.14、2【解析】由扇形的周长和面积,可求出扇形的半径及弧长,进而可求出该扇形的圆心角.【详解】设扇形的半径为,所对弧长为,则有,解得,故.故答案为:2.【点睛】本题考查扇形面积公式、弧长公式的应用,考查学生的计算求解能力,属于基础题.15、【解析】根据题意,找出存在的点,如果找不出则需证明:不存在,,使得【详解】①因为函数是奇函数,可找关于原点对称的点,比如,存在;②假设存在不相等,,使得,即,得,矛盾,故不存在;③函数为偶函数,,令,,则,存在故答案为:【点睛】关键点点睛:证明存在性命题,只需找到满足条件的特殊值即可,反之需要证明不存在,一般考虑反证法,先假设存在,推出矛盾即可,属于中档题.16、【解析】取中点为O,连接VO,BO在正三棱锥中,因为,所以,所以=,所以三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2),时【解析】(1)先利用同角平方关系及二倍角公式,辅助角公式进行化简,即可求解;(2)由的范围先求出的范围,结合余弦函数的性质即可求解【详解】解:(1),,,,故的最小正周期;(2)由可得,,当得即时,函数取得最小值.所以,时18、(1)..(2)见解析(3),【解析】(1)两条对称轴之间的距离是半个周期,求,当时,代入求(2)由(1)知,根据“五点法”画出函数的图象;(3)首先求图象变换后的解析式,再令,,求函数的单调递减区间.【详解】(1)∵相邻两条对称轴之间的距离为,∴的最小正周期,∴.∵直线是函数的图象的一条对称轴,∴.∴,∵,∴(2)由知0-1010故函数在区间上的图象如图(3)由的图象上各点的横坐标缩短为原来的(纵坐标不变),得到,图象向左平移个单位后得到,,令,,∴函数的单调减区间为,【点睛】本题考查三角函数性质和图象的综合问题,意在考查熟练掌握三角函数性质,一般“五点法”画的图象,若是函数图象变换,1.左右平移,需根据“左+右-”的变换规律求解,2.周期变换(伸缩变换),若是函数横坐标伸长(或缩短)到原来的倍,变换后的解析式为.19、(1)正确,;(2)(i)和,(ii)存在符合题意,理由见解析.【解析】(1)根据和谐区间的定义判断两个函数即可;(2)(i)根据是奇函数求出的解析式,再利用“和谐区间”的定义求出的“和谐区间”,(ii)由(i)可得的解析式,由与都是奇函数,问题转化为与的图象在第一象限内有一个交点,由单调性求出的端点坐标,代入可得临界值即可求解.【小问1详解】函数定义域为,且为奇函数,当时,单调递减,任意的,则,所以时,没有“和谐区间”,同理时,没有“和谐区间”,所以“函数没有“和谐区间”是正确的,在上单调递减,所以在上单调递减,所以值域为,即,所以,所以,是方程的两根,因为,解得,所以函数的“和谐区间”为.【小问2详解】(i)因为当时,所以当时,,所以因为是定义在上的奇函数,所以,所以当时,,可得,设,因为在上单调递减,所以,,所以,,所以,是方程的两个不相等的正数根,即,是方程的两个不相等的正数根,且,所以,,所以在区间上的“和谐区间”是,同理可得,在区间上的“和谐区间”是.所以的“和谐区间”是和,(ii)存在,理由如下:因为函数的图象是以在定义域内所有“和谐区间”上的图象,所以若集合恰含有个元素,等价于函数与函数的图象有两个交点,且一个交点在第一象限,一个交点在第三象限.因为与都是奇函数,所以只需考虑与的图象在第一象限内有一个交点.因为在区间上单调递减,所以曲线的两个端点为,.因为,所以的零点是,,或所以当的图象过点时,,;当图象过点时,,,所以当时,与的图象在第一象限内有一个交点.所以与的图象有两个交点.所以的取值范围是.20、(1);(2)在上为增函数,证明见解析.【解析】(1)由可求得的值;(2)任取,可证明,则,从而可得结论.【详解】(1)由于是定义在上的奇函数,故,解得.经检验,是奇函数;(2)是上的增函数,证明如下:任取,,由于,所以,,所以,即,所以在上为增函数【点睛】本题主要考查根据奇偶性求参数,考查了函数单调性的判断与证明,同时考查了计算能力,属于中档题.21、(1)()(2)存在,【解析】(1)设出动圆圆心坐标,由动圆圆心到切线的距离等于动圆与定圆的圆心距减定圆的半径列式求解动圆圆心的轨迹方程;(2)求出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 音频信号加密及取证技术研究
- 著作权投机行为法律规制研究
- 考虑填土特性的黄土填方边坡可靠度分析
- 湘教版一年级美术主题教学计划
- 2025年非营利组织自我评估范文
- 电商平台疫情防控职责与风险管理
- 幼儿园家委会资源整合工作计划
- 文化遗产保护施工的安全生产措施
- 房地产项目绿化突发事件应急方案计划
- 2024-2025安全标准化安全培训考试试题含答案下载
- 物业承接查验方案及查验方法
- 四川老街改造规划设计
- GB/T 11606-2007分析仪器环境试验方法
- NCT青少年编程能力等级
- 11471劳动争议处理(第4章)
- 公共管理学黎民讲义
- 初三数学总复习教学策略课件
- 一年级语文下册识字表(可打印最全版本)
- 结晶葡萄糖生产工艺简介课件
- 危大工程验收记录表(模板工程)
- 中班科学活动:风车转转转课件-2
评论
0/150
提交评论