版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省常州市前黄高中高二上数学期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.圆心在x轴上且过点的圆与y轴相切,则该圆的方程是()A. B.C. D.2.下列函数中,以为最小正周期,且在上单调递减的为()A. B.C. D.3.已知圆柱的表面积为定值,当圆柱的容积最大时,圆柱的高的值为()A.1 B.C. D.24.已知向量,,且,则实数等于()A.1 B.2C. D.5.如图,在平行六面体(底面为平行四边形的四棱柱)中,E为延长线上一点,,则=()A. B.C. D.6.已知等比数列的前项和为,公比为,则()A. B.C. D.7.《九章算术》中,将四个面都为直角三角形的三棱锥称为鳖臑(nào).如图所示的三棱锥为一鳖臑,且平面,平面,若,,,则()A. B.C. D.8.直线的倾斜角的大小为A. B.C. D.9.已知数列满足,且,则()A.2 B.3C.5 D.810.在公比为为q等比数列中,是数列的前n项和,若,则下列说法正确的是()A. B.数列是等比数列C. D.11.在四棱锥中,底面ABCD是正方形,E为PD中点,若,,,则()A. B.C. D.12.平行六面体中,若,则()A. B.1C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,,,四点中恰有三点在椭圆上,则椭圆C的方程为________.14.函数在处的切线与平行,则________.15.在正方体中,,,P,F分别是线段,的中点,则点P到直线EF的距离是___________.16.设函数的导函数为,已知函数,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,已知点,,过点的动直线与过点的动直线的交点为P,,的斜率均存在且乘积为,设动点Р的轨迹为曲线C.(1)求曲线C的方程;(2)若点M在曲线C上,过点M且垂直于OM的直线交C于另一点N,点M关于原点O的对称点为Q.直线NQ交x轴于点T,求的最大值.18.(12分)城南公园种植了4棵棕榈树,各棵棕榈树成活与否是相互独立的,成活率为p,设为成活棕榈树的株数,数学期望.(1)求p的值并写出的分布列;(2)若有2棵或2棵以上的棕榈树未成活,则需要补种,求需要补种棕榈树的概率.19.(12分)某市对排污水进行综合治理,征收污水处理费,系统对各厂一个月内排出的污水量x吨收取的污水处理费y元,运行程序如图所示:INPUTxIFTHENELSEIFTHENELSEENDIFENDIFPRINTyEND(1)请写出y与x的函数关系式;(2)求排放污水150吨的污水处理费用.20.(12分)已知斜率为的直线与椭圆:交于,两点(1)若线段的中点为,求的值;(2)若,求证:原点到直线的距离为定值21.(12分)2017年国家提出乡村振兴战略目标:2020年取得重要进展,制度框架和政策体系基本形成;2035年取得决定性进展,农业农村现代化基本实现;2050年乡村全面振兴,农业强、农村美、农民富全面实现.某地为实现乡村振兴,对某农产品加工企业调研得到该企业2012年到2020年盈利情况:年份201220132014201520162017201820192020年份代码x123456789盈利y(百万)6.06.16.26.06.46.96.87.17.0(1)根据表中数据判断年盈利y与年份代码x是否具有线性相关性;(2)若年盈利y与年份代码x具有线性相关性,求出线性回归方程并根据所求方程预测该企业2021年年盈利(结果保留两位小数)参考数据及公式:,,,,,统计中用相关系数r来衡量变量y,x之间的线性关系的强弱,当时,变量y,x线性相关22.(10分)已知椭圆的下焦点为、上焦点为,其离心率.过焦点且与x轴不垂直的直线l交椭圆于A、B两点(1)求实数m的值;(2)求△ABO(O为原点)面积的最大值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题意设出圆的方程,列式即可求出【详解】依题可设圆的方程为,所以,解得即圆的方程是故选:A2、B【解析】A.利用正切函数的性质判断;B.作出的图象判断;C.作出的图象判断;D.作出的图象判断.【详解】A.是以为最小正周期,在上单调递增,故错误;B.如图所示:,由图象知:函数是以为最小正周期,在上单调递减,故正确;C.如图所示:,由图象知:是以为最小正周期,在上单调递增,故错误;D.如图所示:,由图象知:是以为最小正周期,在上单调递增,故错误;故选:B3、B【解析】设圆柱的底面半径为,则圆柱底,圆柱侧,则可得,则圆柱的体积为,利用导数求出最大值,确定值.【详解】设圆柱的底面半径为,则圆柱底,圆柱侧,∴,∴,则圆柱的体积,∴,由得,由得,∴当时,取极大值,也是最大值,即故选:B【点睛】本题主要考查了圆柱表面积和体积的计算,考查了导数的实际应用,考查了学生的应用意识.4、C【解析】利用空间向量垂直的坐标表示计算即可得解【详解】因向量,,且,则,解得,所以实数等于.故选:C5、A【解析】根据空间向量的加减法运算法则,直接写出向量的表达式,即可得答案.【详解】=,故选:A.6、D【解析】利用等比数列的求和公式可求得的值.【详解】由等比数列的求和公式可得,解得.故选:D.7、A【解析】根据平面,平面求解.【详解】因为平面,平面,所以,又,,,所以,所以,故选:A8、A【解析】考点:直线的倾斜角专题:计算题分析:因为直线的斜率是倾斜角的正切值,所以欲求直线的倾斜角,只需求出直线的斜率即可,把直线化为斜截式,可得斜率,问题得解解答:解:∵x-y+1=0可化为y=x+,∴斜率k=设倾斜角为θ,则tanθ=k=,θ∈[0,π)∴θ=故选A点评:本题主要考查了直线的倾斜角与斜率之间的关系,属于直线方程的基础题型,需要学生对基础知识熟练掌握9、D【解析】使用递推公式逐个求解,直到求出即可.【详解】因为所以,,,.故选:D10、D【解析】根据等比数列的通项公式、前项和公式的基本量运算,即可得到答案;【详解】,,故A错误;,,显然数列不是等比数列,故B错误;,故C错误;,,故D成立;故选:D11、C【解析】根据向量线性运算法则计算即可.【详解】故选:C12、D【解析】根据空间向量的运算,表示出,和已知比较可求得的值,进而求得答案.【详解】在平行六面体中,有,故由题意可知:,即,所以,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由于,关于轴对称,故由题设知C经过,两点,C不经过点,然后求出a,b,即可得到椭圆的方程.【详解】解:由于,关于轴对称,故由题设知经过,两点,所以.又由知,不经过点,所以点在上,所以.因此,故方程为.故答案为:.【点睛】求椭圆的标准方程有两种方法:①定义法:根据椭圆的定义,确定,的值,结合焦点位置可写出椭圆方程②待定系数法:若焦点位置明确,则可设出椭圆的标准方程,结合已知条件求出,;若焦点位置不明确,则需要分焦点在轴上和轴上两种情况讨论,也可设椭圆的方程为14、2【解析】由得出的值.【详解】因为函数在处的切线与平行所以,故故答案为:215、【解析】以A为坐标原点建立空间直角坐标系,利用向量法即可求解点P到直线EF的距离.【详解】解:如图,以A为坐标原点,,,的方向分别为x,y,z轴的正方向,建立空间直角坐标系,因为,所以,,,所以,,所以点P到直线EF的距离.故答案为:.16、【解析】首先求出函数的导函数,再令代入计算可得;【详解】解:因为,所以,所以,解得;故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设点坐标为,根据两直线的斜率之积为得到方程,整理即可;(2)设,,,根据设、在椭圆上,则,再由,则,即可表示出直线、的方程,联立两直线方程,即可得到点的纵坐标,再根据弦长公式得到,令,则,最后利用基本不等式计算可得;【小问1详解】解:设点坐标为,定点,,直线与直线的斜率之积为,,【小问2详解】解:设,,,则,,所以又,所以,又即,则直线:,直线:,由,解得,即,所以令,则,所以因为,当且仅当即时取等号,所以的最大值为;18、(1),分布列见解析;(2).【解析】(1)根据二项分布知识即可求解;(2)将补种棕榈树的概率转化为成活的概率,结合概率加法公式即可求解.【小问1详解】由题意知,,又,所以,故未成活率为,由于所有可能的取值为0,1,2,3,4,所以,,,,,则的分布列为01234【小问2详解】记“需要补种棕榈树”为事件A,由(1)得,,所以需要补种棕榈树的概率为.19、(1);(2)1400(元).【解析】(1)根据已知条件即可容易求得函数关系式;(2)根据(1)中所求函数关系式,令,求得函数值即可.【小问1详解】根据题意,得:当时,;当时,;当时,.即.【小问2详解】因为,故,故该厂应缴纳污水处理费1400元.20、(1);(2)证明见解析.【解析】(1)设出两点的坐标,利用点差法即可求出的值;(2)设出直线的方程,与椭圆方程联立,写韦达;根据,求出,从而可证明原点到直线的距离为定值【小问1详解】设,则,,两式相减,得,即,所以,即,又因为线段的中点为,所以,即;【小问2详解】设斜率为的直线为,,由,得,所以,,因为,所以,即,所以,所以,即,所以,原点到直线的距离为.所以原点到直线的距离为定值.21、(1)年盈利y与年份代码x具有线性相关性(2),7.25百万元【解析】(1)根据表中的数据和提供的公式计算即可;(2)先求线性回归方程,再代入计算即可【小问1详解】由表中的数据得,,,,因为,所以年盈利y与年份代码x具
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 科技职业技术学院单招职业倾向性测试题库附答案详解【模拟题】
- 安全员A证考试练习题附完整答案详解【典优】
- 安全员A证考试高分题库含完整答案详解(典优)
- 青联活动方案
- 房地产销售方案设计稿
- 安全员A证考试题库练习备考题及参考答案详解【达标题】
- 安全员A证考试考前冲刺分析含完整答案详解【各地真题】
- 安全员A证考试考试彩蛋押题及参考答案详解(基础题)
- 大学生文明劝导员策划方案范本
- 安全员A证考试通关训练试卷详解附参考答案详解【培优b卷】
- 2025年社区矫正法试题附答案
- 项目监理安全生产责任制度
- 广东电力市场交易系统 -竞价登记操作指引 新能源项目登记操作指引(居民项目主体)
- 地源热泵机房施工规划与组织方案
- 太仓市高一化学期末考试卷及答案
- 生活物资保障指南解读
- 2025年浙江省委党校在职研究生招生考试(社会主义市场经济)历年参考题库含答案详解(5卷)
- DB3704∕T0052-2024 公园城市建设评价规范
- 采购领域廉洁培训课件
- 2025年中国化妆品注塑件市场调查研究报告
- 小儿药浴治疗
评论
0/150
提交评论