云南省昭通市盐津县一中2025届高二数学第一学期期末经典试题含解析_第1页
云南省昭通市盐津县一中2025届高二数学第一学期期末经典试题含解析_第2页
云南省昭通市盐津县一中2025届高二数学第一学期期末经典试题含解析_第3页
云南省昭通市盐津县一中2025届高二数学第一学期期末经典试题含解析_第4页
云南省昭通市盐津县一中2025届高二数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省昭通市盐津县一中2025届高二数学第一学期期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,则函数在点处的切线方程为()A. B.C. D.2.已知中,内角,,的对边分别为,,,,.若为直角三角形,则的面积为()A. B.C.或 D.或3.圆与圆的位置关系为()A.内切 B.外切C.相交 D.相离4.某班新学期开学统计新冠疫苗接种情况,已知该班有学生45人,其中未完成疫苗接种的有5人,则该班同学的疫苗接种完成率为()A. B.C. D.5.已知数列的通项公式为,则“”是“数列为单调递增数列”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件6.如图,平面四边形中,,,,为等边三角形,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A. B.C. D.7.已知数列的通项公式是,则()A10100 B.-10100C.5052 D.-50528.已知直线与直线平行,且直线在轴上的截距比在轴上的截距大,则直线的方程为()A. B.C. D.9.已知向量,,则向量等于()A.(3,1,-2) B.(3,-1,2)C.(3,-1,-2) D.(-3,-1,-2)10.若正方体ABCD­A1B1C1D1的棱长为1,则直线A1C1到平面ACD1的距离为()A.1 B.C. D.11.“直线的斜率不大于0”是“直线的倾斜角为钝角”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.已知数列满足,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若不等式的解集为,则________14.直线过点,且原点到直线l的距离为,则直线方程是______15.已知直线,圆,若直线与圆相交于两点,则的最小值为______16.直线与曲线有且仅有一个公共点.则b的取值范围是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列{an}为等差数列,且a1+a5=-12,a4+a8=0.(1)求数列{an}的通项公式;(2)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求数列{bn}的通项公式18.(12分)椭圆:()的离心率为,递增直线过椭圆的左焦点,且与椭圆交于两点,若,求直线的斜率.19.(12分)已知双曲线的一条渐近线方程为,且双曲线C过点.(1)求双曲线C的标准方程;(2)过点M的直线与双曲线C的左右支分别交于A、B两点,是否存在直线AB,使得成立,若存在,求出直线AB的方程;若不存在,请说明理由.20.(12分)已知向量,,且.(1)求满足上述条件的点M(x,y)的轨迹C的方程;(2)设曲线C与直线y=kx+m(k≠0)相交于不同的两点P,Q,点A(0,1),当|AP|=|AQ|时,求实数m的取值范围.21.(12分)如图,在三棱锥中,,,为的中点(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角正弦值.22.(10分)已知函数(1)求的单调区间;(2)若,求的最大值与最小值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】依据导数几何意义去求函数在点处的切线方程即可解决.【详解】则,又则函数在点处的切线方程为,即故选:C2、C【解析】由正弦定理化角为边后,由余弦定理求得,然后分类讨论:或求解【详解】由正弦定理,可化为:,即,所以,,所以,又为直角三角形,若,则,,,,若,则,,,故选:C3、B【解析】求出两圆的圆心距与半径之和、半径之差比较大小即可得出正确答案.【详解】由可得圆心为,半径,由可得圆心为,半径,所以圆心距为,所以两圆相外切,故选:B.4、D【解析】利用古典概型的概率求解.【详解】该班同学的疫苗接种完成率为故选:D5、A【解析】根据充分条件和必要条件的定义,结合数列的单调性判断【详解】根据题意,已知数列的通项公式为,若数列为单调递增数列,则有(),所以,因为,所以,所以当时,数列为单调递增数列,而当数列为单调递增数列时,不一定成立,所以“”是“数列为单调递增数列”的充分而不必要条件,故选:A6、A【解析】将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,在中,计算半径即可.【详解】由,,可知平面将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,记的外心为,由为等边三角形,可得又,故在中,此即为外接球半径,从而外接球表面积为故选:A【点睛】本题考查了三棱锥外接球的表面积,考查了学生空间想象,逻辑推理,综合分析,数学运算的能力,属中档题.7、D【解析】根据已知条件,用并项求和法即可求得结果.【详解】∵∴∴.故选:D.8、A【解析】分析可知直线不过原点,可设直线的方程为,其中且,利用斜率关系可求得实数的值,化简可得直线的方程.【详解】若直线过原点,则直线在两坐标轴上的截距相等,不合乎题意,设直线的方程为,其中且,则直线的斜率为,解得,所以,直线的方程为,即.故选:A.9、B【解析】根据空间向量线性运算的坐标表示即可得出答案.【详解】解:因为,,所以.故选:B.10、B【解析】先证明点A1到平面ACD1的距离即为直线A1C1到平面ACD1的距离,再建立空间直角坐标系,利用向量法求解.【详解】因为平面平面,所以A1C1//平面ACD1,则点A1到平面ACD1的距离即为直线A1C1到平面ACD1的距离.建立如图所示的空间直角坐标系,易知=(0,0,1),由题得平面,所以平面,所以,同理,因为平面,所以平面,所以是平面一个法向量,所以平面ACD1的一个法向量为=(1,1,1),故所求的距离为.故选:B【点睛】方法点睛:求点到平面的距离常用的方法有:(1)几何法(找作证指求);(2)向量法;(3)等体积法.要根据已知条件灵活选择方法求解.11、B【解析】直线倾斜角的范围是[0°,180°),直线斜率为倾斜角(不为90°)的正切值,据此即可判断求解.【详解】直线的斜率不大于0,则直线l斜率可能等于零,此时直线倾斜角为0°,不为钝角,故“直线的斜率不大于0”不是“直线的倾斜角为钝角”充分条件;直线的倾斜角为钝角时,直线的斜率为负,满足直线的斜率不大于0,即“直线的倾斜角为钝角”是“直线的斜率不大于0”的充分条件,“直线的斜率不大于0”是“直线的倾斜角为钝角”的必要条件;综上,“直线的斜率不大于0”是“直线的倾斜角为钝角”的必要不充分条件.故选:B.12、A【解析】根据递推关系依次求出即可.【详解】,,,,,.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、11【解析】根据题意得到2与3是方程的两个根,再根据两根之和与两根之积求出,进而求出答案.【详解】由题意得:2与3是方程的两个根,则,,所以.故答案为:1114、【解析】直线斜率不存在不满足题意,即设直线的点斜式方程,再利用点到直线的距离公式,求出的值,即可求出直线方程.【详解】①当直线斜率不存在时,显然不满足题意.②当直线斜率存在时,设直线为.原点到直线l的距离为,即直线方程为.故答案为:.15、【解析】求出直线过的定点,当圆心和定点的连线垂直于直线时,取得最小值,结合即可求解.【详解】由题意知,圆,圆心,半径,直线,,,解得,故直线过定点,设圆心到直线的距离为,则,可知当距离最大时,有最小值,由图可知,时,最大,此时,此时.故的最小值为.故答案为:.16、或.【解析】根据曲线方程得曲线的轨迹是个半圆,数形结合分析得两种情况:(1)直线与半圆相切有一个交点;(2)直线与半圆相交于一个点,综合两种情况可得答案.【详解】由曲线,可得,表示以原点为圆心,半径为的右半圆,是倾斜角为的直线与曲线有且只有一个公共点有两种情况:(1)直线与半圆相切,根据,所以,结合图像可得;(2)直线与半圆的上半部分相交于一个交点,由图可知.故答案为:或.【点睛】方法点睛:处理直线与圆位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法;如果或有限制,需要数形结合进行分析.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)an=2n-12;(2).【解析】(1)根据等差数列的性质得到,然后根据等差数列的通项公式求出和的值即可.(2)根据(1)的条件求出b2=-24,b1=-8,然后根据等比数列的通项公式求出的值即可.【小问1详解】设等差数列{an}的公差为d,因为a1+a5=2a3=-12,a4+a8=2a6=0,所以,所以,解得,所以an=-10+2(n-1)=2n-12.【小问2详解】设等比数列{bn}的公比为q,因为b2=a1+a2+a3=-24,b1=-8,所以-8q=-24,即q=3,因此.18、1【解析】根据离心率写出,设出直线为,把直线的方程与椭圆进行联立消,写出韦达定理,再利用,即可解出,进而求出直线的斜率.【详解】,.设递增直线的方程为,把直线的方程与椭圆进行联立:.①,②.③.把③代入①中得④.把④代入②中得...19、(1);(2)存在,直线AB的方程为:或.【解析】(1)根据给定的渐近线方程及所过的点列式计算作答.(2)假定存在符合条件的直线AB,设出其方程,借助弦长公式计算判断作答.【小问1详解】依题意,,解得:,所以双曲线C的标准方程是.【小问2详解】假定存在直线AB,使得成立,显然不垂直于y轴,否则,设直线:,由消去x并整理得:,因直线与双曲线C的左右支分别交于A、B两点,设,于是得,则有,即或,因此,,解得,所以存在直线AB,使得成立,此时,直线AB的方程为:或.20、(1)+y2=1;(2).【解析】(1)应用向量垂直的坐标表示得x2+3y2=3,即可写出M的轨迹C的方程;(2)由直线与曲线C交于不同的两点P(x1,y1),Q(x2,y2),设直线y=kx+m(k≠0),联立方程整理所得方程有,且由根与系数关系用m,k表示x1+x2,x1x2,若N为PQ的中点结合|AP|=|AQ|知PQ⊥AN可得m、k的等量关系,结合即可求m的范围.【详解】(1)∵,即,∴,即有x2+3y2=3,即点M(x,y)的轨迹C的方程为+y2=1.(2)由得(1+3k2)x2+6kmx+3(m2-1)=0.∵曲线C与直线y=kx+m(k≠0)相交于不同的两点,∴Δ=(6km)2-12(1+3k2)(m2-1)=12(3k2-m2+1)>0,即3k2-m2+1>0①,且x1+x2=,x1x2=.设P(x1,y1),Q(x2,y2),线段PQ的中点N(x0,y0),则.∵|AP|=|AQ|,即知PQ⊥AN,设kAN表示直线AN的斜率,又k≠0,∴kANk=-1.即·k=-1,得3k2=2m-1②,而3k2>0,有m>.将②代入①得2m1m2+1>0,即2m<0,解得0<m<2,∴m的取值范围为.【点睛】思路点睛:1、由向量垂直,结合其坐标表示得到关于x,y的方程,写出曲线C的标准方程即可.2、由直线与曲线C相交,联立方程有,由|AP|=|AQ|得直线的垂直关系,即斜率之积为-1,进而可求参数的范围.21、(1)证明见解析;(2).【解析】(1)根据等腰三角形性质得PO垂直AC,再通过计算,根据勾股定理得PO垂直OB,最后根据线面垂直判定定理得结论;(2)根据条件建立空间直角坐标系,设立各点坐标,根据方程组解出平面PAM一个法向量,利用向量数量积求出两个法向量夹角,根据二面角与法向量夹角相等或互补关系列方程,解得M坐标,再利用向量数量积求得向量PC与平面PAM法向量夹角,最后根据线面角与向量夹角互余得结果【详解】(1)因为,为的中点,所以,且连结因为,所以为等腰直角三角形,且由知由知平面(2)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系由已知得取平面的法向量设,则设平面的法向量为由得,可取所以.由已知得所以.解得(舍去),所以又,所以所以与平面所成角的正弦值为【点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论