




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省邵阳市邵阳县数学高一上期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若关于的方程有且仅有一个实根,则实数的值为()A3或-1 B.3C.3或-2 D.-12.如图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗盛满液体,经过3分钟漏完.已知圆柱中液面上升的速度是一个常量,H是圆锥形漏斗中液面下落的距离,则H与下落时间(分)的函数关系表示的图象只可能是()A. B.C. D.3.已知,则“”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件4.以下命题(其中,表示直线,表示平面):①若,,则;②若,,则;③若,,则;④若,,则其中正确命题的个数是A.0个 B.1个C.2个 D.3个5.若,则的最小值为()A. B.C. D.6.如图,四边形ABCD是平行四边形,则12A.AB B.CDC.CB D.AD7.设,,,则的大小关系是()A B.C. D.8.已知函数,若关于的不等式恰有一个整数解,则实数的最小值是A. B.C. D.9.如图,其所对应的函数可能是()A B.C. D.10.的值是()A B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若函数的最小值与函数的最小值相等,则实数的取值范围是__________12.已知扇形的弧长为2cm,圆心角为1rad,则扇形的面积为______.13.若函数在上存在零点,则实数的取值范围是________14.已知,则_________15.若,则______.16.已知函数,为偶函数,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)已知,,,求的最小值;(2)把角化成的形式.18.已知函数,,图象上相邻两个最低点的距离为(1)若函数有一个零点为,求的值;(2)若存在,使得(a)(b)(c)成立,求的取值范围19.某厂生产某种产品的年固定成本为万元,每生产千件,需另投入成本为.当年产量不足千件时,(万元);当年产量不小于千件时,(万元).通过市场分析,若每件售价为元时,该厂年内生产的商品能全部售完.(利润销售收入总成本)(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)年产量为多少万件时,该厂在这一商品的生产中所获利润最大?20.某种商品在天内每克的销售价格(元)与时间的函数图象是如图所示的两条线段(不包含两点);该商品在30天内日销售量(克)与时间(天)之间的函数关系如下表所示:第天5152030销售量克35252010(1)根据提供的图象,写出该商品每克销售的价格(元)与时间的函数关系式;(2)根据表中数据写出一个反映日销售量随时间变化的函数关系式;(3)在(2)的基础上求该商品的日销售金额的最大值,并求出对应的值.(注:日销售金额=每克的销售价格×日销售量)21.已知在第一象限,若,,,求:(1)边所在直线的方程;
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】令,根据定义,可得的奇偶性,根据题意,可得,可求得值,分析讨论,即可得答案.【详解】令,则,所以为偶函数,图象关于y轴对称,因为原方程仅有一个实根,所以有且仅有一个根,即,所以,解得或-1,当时,,,,不满足仅有一个实数根,故舍去,当时,,当时,由复合函数的单调性知是增函数,所以,当时,,所以,所以仅有,满足题意,综上:.故选:B2、A【解析】利用特殊值法,圆柱液面上升速度是常量,表示圆锥漏斗中液体单位时间内落下相同的体积,当时间取分钟时,液面下降的高度与漏斗高度的比较.【详解】由于所给的圆锥形漏斗上口大于下口,当时间取分钟时,液面下降的高度不会达到漏斗高度的,对比四个选项的图象可得结果.故选:A【点睛】本题主要考查了函数图象的判断,常利用特殊值和函数的性质判断,属于中档题.3、A【解析】“a>1”⇒“”,“”⇒“a>1或a<0”,由此能求出结果【详解】a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件故选A【点睛】充分、必要条件的三种判断方法
定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件
等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法
集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件4、A【解析】利用线面平行和线线平行的性质和判定定理对四个命题分别分析进行选择【详解】①若a∥b,b⊂α,则a∥α或a⊂α,故错;②若a∥α,b∥α,则a,b平行、相交或异面,故②错;③若a∥b,b∥α,则a∥α或a⊂α,故③错;④若a∥α,b⊂α,则a、b平行或异面,故④错正确命题个数为0个,故选A.【点睛】本题考查空间两直线的位置关系,直线与平面的位置关系,主要考查线面平行的判定和性质.5、B【解析】由,根据基本不等式,即可求出结果.【详解】因为,所以,,因此,当且仅当,即时,等号成立.故选:B.6、D【解析】由线性运算的加法法则即可求解.【详解】如图,设AC,BD交于点O,则12故选:D7、C【解析】详解】,即,选.8、A【解析】将看作整体,先求的取值范围,再根据不等式恰有一个整点和函数的图像,推断参数,的取值范围【详解】做出函数的图像如图实线部分所示,由,得,若,则满足不等式,不等式至少有两个整数解,不满足题意,故,所以,且整数解只能是4,当时,,所以,选择A【点睛】本题考查了分段函数的性质,一元二次不等式的解法,及整体代换思想,数形结合思想的应用,需要根据题设条件,将数学语言转化为图形表达,再转化为参数的取值范围9、B【解析】代入特殊点的坐标即可判断答案.【详解】设函数为,由图可知,,排除C,D,又,排除A.故选:B.10、C【解析】由,应用诱导公式求值即可.【详解】.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由二次函数的知识得,当时有.令,则,.结合二次函数可得要满足题意,只需,解不等式可得所求范围【详解】由已知可得,所以当时,取得最小值,且令,则,要使函数的最小值与函数的最小值相等,只需满足,解得或.所以实数的取值范围是故答案为【点睛】本题考查二次函数最值的问题,求解此类问题时要结合二次函数图象,即抛物线的开口方向和对称轴与区间的关系进行求解,同时注意数形结合在解题中的应用,考查分析问题和解决问题的能力,属于基础题12、2【解析】首先由扇形的弧长与圆心角求出扇形的半径,再根据扇形的面积公式计算可得;【详解】解:因为扇形的弧长为2cm,圆心角为1rad,所以扇形的半径cm,所以扇形的面积;故答案为:13、【解析】分和并结合图象讨论即可【详解】解:令,则有,原命题等价于函数与在上有交点,又因为在上单调递减,且当时,,在上单调递增,当时,作出两函数的图像,则两函数在上必有交点,满足题意;当时,如图所示,只需,解得,即,综上所述实数的取值范围是.故答案为:14、【解析】两边同时取以15为底的对数,然后根据对数性质化简即可.【详解】因为所以,所以,故答案为:15、【解析】根据指对互化,指数幂的运算性质,以及指数函数的单调性即可解出【详解】由得,即,解得故答案为:16、4【解析】利用二次函数为偶函数的性质得一次项系数为0,定义域关于原点对称,即可求得的值.【详解】由题意得:解得:故答案为:.【点睛】本题考查二次函数的性质,考查逻辑推理能力和运算求解能力,求解时注意隐含条件的挖掘.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用基本不等式可求得的最小值;(2)将角度化为弧度,再将弧度化为的形式即可.【详解】解:(1)因为,,,,当且仅当时,等号成立,故的最小值为;(2),.18、(1);(2).【解析】(1)化简函数解析式,根据周期计算,根据零点计算;(2)求出在,上的最值,解不等式得出的范围【详解】(1),的图象上相邻两个最低点的距离为,的最小正周期为:,故是的一个零点,,,(2),若,,则,,,故在,上的最大值为,最小值为,若存,使得(a)(b)(c)成立,则,【点睛】关键点点睛:本题第二问属于存在,使不等式成立,即转化为,转化为三角函数求最值.19、(1);(2)万件.【解析】(1)由题意,分别写出与对应的函数解析式,即可得分段函数解析式;(2)当时,利用二次函数的性质求解最大值,当时,利用基本不等式求解最大值,比较之后得整个范围的最大值.【详解】解:(1)当,时,当,时,∴(2)当,时,,∴当时,取得最大值(万元)当,时,当且仅当,即时等号成立.即时,取得最大值万元综上,所以即生产量为万件时,该厂在这一商品的生产中所获利润最大为万元【点睛】与函数相关的应用题在求解的过程中需要注意函数模型的选择,注意分段函数在应用题中的运用,求解最大值时注意利用二次函数的性质以及基本不等式求解.20、(1);(2);(3)25.【解析】(1)设AB所在的直线方程为P=kt+20,将B点代入可得k值,由CD两点坐标可得直线CD所在的两点式方程,进而可得销售价格P(元)与时间t的分段函数关系式(2)设Q=k1t+b,把两点(5,35),(15,25)的坐标代入,可得日销售量Q随时间t变化的函数的解析式(3)设日销售金额为y,根据销售金额=销售价格×日销售量,结合(1)(2)的结论得到答案【详解】(1)由图可知,,,,设所在直线方程为,把代入得,所以.,由两点式得所在的直线方程为,整理得,,,所以,(2)由题意,设,把两点,代入得,解得所以把点,代入也适合,即对应的四点都在同一条直线上,所以.(本题若把四点中的任意两点代入中求出,,再验证也可以)(3)设日销售金额为,依题意得,当时,配方整理得,当时,在区间上的最大值为900当时,,配方整理得,所以当时,在区间上的最大值为1125.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江省宁波市镇海中学2025年5月第二次模拟考试 生物试卷+答案
- 大班绘画活动《美丽的衣服》
- 人类的起源和发展教学设计
- 因式分解知识点总结模版
- 开展法制教育进校园活动方案
- 工程造价管理团队年度工作总结
- 食管类癌的临床护理
- 影城消防培训试题及答案
- 银行总行面试题目及答案
- 银行小组面试试题及答案
- 管道沟槽土方开挖施工方案
- 2023年湖南省普通高中学业水平合格性考试化学含答案
- 废旧物资合同
- 政工类人员培训课件
- 居家社区养老助洁服务规范
- 【宜宾五粮液有限公司偿债能力分析(定量论文)11000字】
- 灯光音响舞台机械施工施工方案和技术措施方案
- 《安全事故管理》课件
- 汽车驾驶技术(劳动版)课件:高原、沙漠及林区驾驶
- 专科联盟服务流程
- 初中生物教师实验技能培训1
评论
0/150
提交评论