广西南宁市广西大学附属中学2024-2025学年九年级数学第一学期开学质量跟踪监视试题【含答案】_第1页
广西南宁市广西大学附属中学2024-2025学年九年级数学第一学期开学质量跟踪监视试题【含答案】_第2页
广西南宁市广西大学附属中学2024-2025学年九年级数学第一学期开学质量跟踪监视试题【含答案】_第3页
广西南宁市广西大学附属中学2024-2025学年九年级数学第一学期开学质量跟踪监视试题【含答案】_第4页
广西南宁市广西大学附属中学2024-2025学年九年级数学第一学期开学质量跟踪监视试题【含答案】_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页广西南宁市广西大学附属中学2024-2025学年九年级数学第一学期开学质量跟踪监视试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在同一直角坐标系中,函数和的图象相交于点A,则不等式的解集是A. B. C. D.2、(4分)下列图形是轴对称的是()A. B. C. D.3、(4分)若关于x的方程ax2﹣(3a+1)x+2(a+1)=0有两个不相等的实数根x1,x2,且有x1﹣x1x2+x2=1﹣a,则a的值是()A.﹣1 B.1 C.1或﹣1 D.24、(4分)如图所示是根据某班级名同学一周的体育锻炼情况绘制的统计图,由图像可知该班同学一周参加体育锻炼时间的中位数,众数分别是()A.,B.,C.,D.,5、(4分)某药品经过两次降价,每瓶零售价由元降为元。已知两次降价的百分率相同,每次降价的百分率为,根据题意列方程得()A. B.C. D.6、(4分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=()度.A.270° B.300°C.360° D.400°7、(4分)学校准备从甲、乙、丙、丁四名同学中选择一名同学参加市里举办的“汉字听写大赛”,下表是四位同学几次测试成绩的平均分和方差的统计结果,如果要选出一个成绩好且状态稳定的同学参赛,那么应该选择的同学是()甲乙丙丁平均分94989896方差11.211.8A.甲 B.乙 C.丙 D.丁8、(4分)如图四边形ABCD是正方形,点E、F分别在线段BC、DC上,∠BAE=30°.若线段AE绕点A逆时针旋转后与线段AF重合,则旋转的角度是()A.30° B.45° C.60° D.90°二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)当x=2时,二次根式的值为________.10、(4分)不等式组的解集是_____.11、(4分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集是_____________。12、(4分)若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为_____.13、(4分)如图,中,,,,为的中点,若动点以1的速度从点出发,沿着的方向运动,设点的运动时间为秒(),连接,当是直角三角形时,的值为_____.三、解答题(本大题共5个小题,共48分)14、(12分)甲、乙两名学生练习计算机打字,甲打一篇1000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字,则乙每分钟打______个字.15、(8分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1,平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C1绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标.16、(8分)如图,在矩形中,为对角线,点为边上一动点,连结,过点作,垂足为,连结.(1)证明:;(2)当点为的中点时,若,求的度数;(3)当点运动到与点重合时,延长交于点,若,则.17、(10分)如图,在矩形ABCD中,点E为AD上一点,连接BE、CE,.(1)如图1,若;(2)如图2,点P是EC的中点,连接BP并延长交CD于点F,H为AD上一点,连接HF,且,求证:.18、(10分)如图1,在等边△ABC中,AB=BC=AC=8cm,现有两个动点E,P分别从点A和点B同时出发,其中点E以1cm/秒的速度沿AB向终点B运动;点P以2cm/秒的速度沿射线BC运动.过点E作EF∥BC交AC于点F,连接EP,FP.设动点运动时间为t秒(0<t≤8).(1)当点P在线段BC上运动时,t为何值,四边形PCFE是平行四边形?请说明理由;(2)设△EBP的面积为y(cm2),求y与t之间的函数关系式;(3)当点P在射线BC上运动时,是否存在某一时刻t,使点C在PF的中垂线上?若存在,请直接给出此时t的值(无需证明),若不存在,请说明理由.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)一组数据1,2,a,4,5的平均数是3,则这组数据的方差为_____.20、(4分)如图,四边形中,,,且,顺次连接四边形各边中点,得到四边形,再顺次连接四边形各边中点得到四边形,如此进行下去,得到四边形,则四边形的面积是________.21、(4分)在平面直角坐标系中,点P(-3,2)关于x轴对称的点P1的坐标是______________.22、(4分)的化简结果为________23、(4分)如图,等边△ABC内有一点O,OA=3,OB=4,OC=5,以点B为旋转中心将BO逆时针旋转60°得到线段,连接,下列结论:①可以看成是△BOC绕点B逆时针旋转60°得到的;②点O与的距离为5;③∠AOB=150°;④S四边形AOBO′=6+4;⑤=6+.其中正确的结论有_____.(填正确序号)二、解答题(本大题共3个小题,共30分)24、(8分)课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.(1)求证:△ADC≌△CEB;(2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).25、(10分)如图,在平面直角坐标系中,矩形OABC的顶点A在y轴上,C在x轴上,把矩形OABC沿对角线AC所在的直线翻折,点B恰好落在反比例函数的图象上的点处,与y轴交于点D,已知,.求的度数;求反比例函数的函数表达式;若Q是反比例函数图象上的一点,在坐标轴上是否存在点P,使以P,Q,C,D为顶点的四边形是平行四边形?若存在,请求出P点的坐标;若不存在,请说明理由.26、(12分)在平面直角坐标系中,的位置如图所示(每个小方格都是边长1个单位长度的正方形).(1)将沿轴方向向左平移6个单位,画出平移后得到的.(2)将绕着点顺时针旋转,画出旋转后得到的;直接写出点的坐标.(3)作出关于原点成中心对称的,并直接写出的坐标.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】

先利用得到,再求出m得到,接着求出直线与x轴的交点坐标为,然后写出直线在x轴上方和在直线下方所对应的自变量的范围.【详解】当时,,则,把代入y2得,解得,所以,解方程,解得,则直线与x轴的交点坐标为,所以不等式的解集是,故选C.本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数的值大于或小于的自变量x的取值范围;从函数图象的角度看,就是确定直线在x轴上或下方部分所有的点的横坐标所构成的集合.2、D【解析】

根据图形的特点结合轴对称图形和中心对称图形的概念解答.【详解】解:A、既不是轴对称图形,也不是中心对称图形,故本项错误;B、既不是轴对称图形,也不是中心对称图形,故本项错误;C、是中心对称图形,不是轴对称图形,故本项错误;D、是轴对称图形,故本项正确;故选择:D.此题考查了轴对称图形和中心对称图形的概念,熟记的定义是解题的关键.3、A【解析】

根据一元二次方程的求根公式以及根与系数的关系即可解答.【详解】解:依题意△>0,即(3a+1)2﹣8a(a+1)>0,即a2﹣2a+1>0,(a﹣1)2>0,a≠1,∵关于x的方程ax2﹣(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1﹣x1x2+x2=1﹣a,∴x1﹣x1x2+x2=1﹣a,∴x1+x2﹣x1x2=1﹣a,∴﹣=1﹣a,解得:a=±1,又a≠1,∴a=﹣1.故选:A.本题考查一元二次方程根的综合运用,要注意根据题意舍弃一个根是解题关键.4、B【解析】

根据中位数、众数的概念分别求解即可.【详解】将这组数据从小到大的顺序排列后,处于中间位置的那个数,由中位数的定义可知,这组数据的中位数是9;

众数是一组数据中出现次数最多的数,即8;

故选:B考查了中位数、众数的概念,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.5、D【解析】

设每次降价的百分率为x,根据该药品的原价及经两次降价后的价格,即可得出关于x的一元二次方程,此题得解.【详解】解:设每次降价的百分率为x,

根据题意得:168(1-x)2=1.

故选:D.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6、C【解析】

根据多边形的外角和等于360°解答即可.【详解】由多边形的外角和等于360°可知,

∠1+∠2+∠3+∠4+∠5=360°,

故答案为:360°.本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.7、C【解析】

先比较平均数得到乙同学和丙同学成绩较好,然后比较方差得到丙同学的状态稳定,于是可决定选丙同学去参赛.【详解】乙、丙同学的平均数比甲、丁同学的平均数大,应从乙和丙同学中选,丙同学的方差比乙同学的小,丙同学的成绩较好且状态稳定,应选的是丙同学;故选:.主要考查平均数和方差,方差可以反映数据的波动性.方差越小,越稳定.8、A【解析】

根据正方形的性质可得AB=AD,∠B=∠D=90°,再根据旋转的性质可得AE=AF,然后利用“HL”证明Rt△ABE和Rt△ADF全等,根据全等三角形对应角相等可得∠DAF=∠BAE,然后求出∠EAF=30°,再根据旋转的定义可得旋转角的度数.【详解】解:∵四边形ABCD是正方形,

∴AB=AD,∠B=∠D=90°,

∵线段AE绕点A逆时针旋转后与线段AF重合,

∴AE=AF,

在Rt△ABE和Rt△ADF中,,

∴Rt△ABE≌Rt△ADF(HL),

∴∠DAF=∠BAE,

∵∠BAE=30°,

∴∠DAF=30°,

∴∠EAF=90°-∠BAE-∠DAF=90°-30°-30°=30°,

∴旋转角为30°.

故选:A.本题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,求出Rt△ABE和Rt△ADF全等是解题的关键,也是本题的难点.二、填空题(本大题共5个小题,每小题4分,共20分)9、3【解析】【分析】把x=2代入二次根式进行计算即可得.【详解】把x=2代入得,==3,故答案为:3.【点睛】本题考查了二次根式的值,准确计算是解题的关键.10、x≤1【解析】

先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解:解不等式①得:x≤1,解不等式②得:x<7,∴不等式组的解集是x≤1,故答案为:x≤1.本题考查了解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键.11、x<【解析】

先根据函数y=2x和y=ax+4的图象相交于点A(m,3),求出m的值,从而得出点A的坐标,再根据函数的图象即可得出不等式2x<ax+4的解集.【详解】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,解得m,∴点A的坐标是(,3),∴不等式2x<ax+4的解集为x<.此题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.12、1【解析】

解不等式组,得到不等式组的解集,根据整数解的个数判断a的取值范围,解分式方程,用含有a的式子表示y,根据解的非负性求出a的取值范围,确定符合条件的整数a,相加即可.【详解】解:,解①得,x<5;解②得,∴不等式组的解集为;∵不等式有且只有四个整数解,∴,解得,﹣1<a≤1;解分式方程得,y=1﹣a;∵方程的解为非负数,∴1﹣a≥0;即a≤1;综上可知,﹣1<a≤1,∵a是整数,∴a=﹣1,0,1,1;∴﹣1+0+1+1=1故答案为1.本题考查了解一元一次不等式组,分式方程,根据题目条件确定a的取值范围,进一步确定符合条件的整数a,相加求和即可13、2或6或3.1或4.1.【解析】

先求出AB的长,再分①∠BDE=90°时,DE是ΔABC的中位线,然后求出AE的长度,再分点E在AB上和在BA上两种情况列出方程求解即可;②∠BED=90°时,利用∠ABC的余弦列式求出BE,然后分点E在AB上和在BA上两种情况列出方程求解即可.【详解】解:∵∠ACB=90°,∠ABC=60°,BC=2cm,∴AB=BC÷=2÷=4,①∠BDE=90°时,如图(1)∵D为BC的中点,∴DE是ΔABC的中位线,∴AE=AB=×4=2,点E在AB上时,t=2÷1=2秒,点E在BA上时,点E运动的路程为4×2-2=6,t=6÷1=6;②∠BED=90°时,如图(2)BE=BD=×2×=点E在AB上时,t=(4-0.1)÷1=3.1,点E在BA上时,点E运动的路程为4+0.1=4.1,t=4.1÷1=4.1,综上所述,t的值为2或6或3.1或4.1.故答案为:2或6或3.1或4.1.掌握三角形的中位线,三角形的中位线平行于第三边并且等于第三边的一半.含30°角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.三、解答题(本大题共5个小题,共48分)14、45【解析】设乙每分钟打字x个,甲每分钟打个,根据题意可得:,去分母可得:,解得,经检验可得:,故答案为:45.15、(1)图形见解析;(2)P点坐标为(,﹣1).【解析】

(1)分别作出点A、B关于点C的对称点,再顺次连接可得;由点A的对应点A2的位置得出平移方向和距离,据此作出另外两个点的对应点,顺次连接可得;

(2)连接A1A2、B1B2,交点即为所求.【详解】(1)如图所示:A1(3,2)、C1(0,2)、B1(0,0);A2(0,-4)、B2(3,﹣2)、C2(3,﹣4).(2)将△A1B1C1绕某一点旋转可以得到△A2B2C2,旋转中心的P点坐标为(,﹣1).本题主要考查作图-旋转变换、平移变换,解题关键是根据旋转变换和平移变换的定义作出变换后的对应点.16、(1)见解析;(2)53°;(3)【解析】

(1)根据两角对应相等的两个三角形相似即可判断.(2)只要证明△CPQ∽△APC,可得∠PQC=∠ACP即可解决问题.(3)连接AF.与Rt△ADF≌Rt△AQF(HL),推出DF=QF,设AD=AQ=BC=m,DF=FQ=x,FC=y,CQ=a,证明△BCQ∽△CFQ,可得,推出,即,由CF∥AB,可得,推出,可得,推出x2+xy-y2=0,解得x=y或(舍弃),由此即可解决问题.【详解】(1)证明:∵四边形ABCD是矩形,∴∠ABP=90°,∵BQ⊥AP,∴∠BQP=∠ABP=90°,∵∠BPQ=∠APB,∴△ABP∽△BQP.(2)解:∵△ABP∽△BQP,∴∴PB2=PQ•PA,∵PB=PC,∴PC2=PQ•PA,∴∵∠CPQ=∠APC,∴△CPQ∽△APC,∴∠PQC=∠ACP,∵∠BAC=37°,∴∠ACB=90°-37°=53°,∴∠CQP=53°.(3)解:连接AF.∵∠D=∠AQF=90°,AF=AF,AD=AQ,∴Rt△ADF≌Rt△AQF(HL),∴DF=QF,设AD=AQ=BC=m,DF=FQ=x,FC=y,CQ=a,∵∠BCF=∠CQB=∠CQF=90°,∴∠BCQ+∠FCQ=90°,∠CBQ=90°,∴∠FCQ=∠CBQ,∴△BCQ∽△CFQ,∴,∴∴,∵CF∥AB,∴,∴∴∴x2+xy-y2=0,∴x=y或(舍弃),∴∴.故答案为:.本题属于相似形综合题,考查了矩形的性质,相似三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.17、(1)1;(2)详见解析.【解析】

(1)根据题意四边形ABCD是矩形,可得AE=BE,再利用勾股定理得到,即可解答(2)延长BF,AD交于点M.,得到再证明,得到,即可解答【详解】解:(1)∵四边形ABCD是矩形∴AD=AC=4∵∴∴AE=BE∵∴∴∴(2)延长BF,AD交于点M.∵四边形ABCD是矩形∴,∴∵点P是EC的中点∴PC=PE∵∴∴∵∴∴∴∴此题考查矩形的性质,全等三角形的判定与性质,勾股定理,解题关键在于利用矩形的性质求解18、(1)t=;(2)y-t2+4t(0<t≤8);(3)t=时,点C在PF的中垂线上.【解析】

(1)根据当EF=PC时,四边形PCFE是平行四边形,列出关于t的等式求解即可;

(2)作EH⊥BC,用t表示出BP、EH即可得△EBP的面积y;

(3)根据PC=CF,列出关于t的等式即可求.【详解】(1)如图1中,∵EF∥PC,∴当EF=PC时,四边形PCFE是平行四边形,∴t=8-2t,∴t=.(2)如图2中,作EH⊥BC于H.在Rt△EBH中,∵BE=8-t,∠B=60°,∴EH=BE•sin60°=(8-t)•,∴y=•BP•EH=•2t•(8-t)=-t2+4t(0<t≤8).(3)如图3中,当点P在BC的延长线上时,PC=CF时,点C在PF的中垂线上.∴2t-8=8-t,∴t=,∴t=时,点C在PF的中垂线上.本题考查的知识点是三角形的综合运用,解题关键是作辅助线进行解答.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】由平均数的公式得:(51+1+x+4+5)÷5=3,

解得x=3;

∴方差=[(1-3)1+(1-3)1+(4-3)1+(3-3)1+(5-3)1]÷5=1;故答案是:1.20、【解析】

根据四边形的面积与四边形的面积间的数量关系来求其面积.【详解】解:∵四边形中,,,且由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,四边形的面积是.故答案为:.本题主要考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.21、(-3,-2)【解析】

根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】点P(﹣3,2)关于x轴对称的点Q的坐标是(﹣3,﹣2).故答案为:(﹣3,﹣2).本题考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.22、【解析】

根据二次根式的乘法,化简二次根式即可.【详解】解:,故答案为:.本题考查了二次根式的性质与化简,熟练掌握二次根式的乘法法则是解题关键.23、①③⑤【解析】

如图,首先证明△OBO′为等边三角形,得到OO′=OB=4,故选项②错误;证明△ABO′≌△CBO,得到选项①正确;运用勾股定理逆定理证明△AOO′为直角三角形,求出∠AOB的度数,得到选项③正确;运用面积公式求出四边形AOBO′的面积,可判断选项④错误;将△AOB绕A点逆时针旋转60°至△AO″C,可得△AOO″是边长为3的等边三角形,△COO″是边长为3,4,5的直角三角形,再根据S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″进行计算即可判断选项⑤正确.【详解】解:如下图,连接OO′,∵△ABC为等边三角形,∴∠ABC=60°,AB=CB;由题意得:∠OBO′=60°,OB=O′B,∴△OBO′为等边三角形,∠ABO′=∠CBO,∴OO′=OB=4;∠BOO′=60°,∴选项②错误;在△ABO′与△CBO中,,∴△ABO′≌△CBO(SAS),∴AO′=OC=5,可以看成是△BOC绕点B逆时针旋转60°得到的,∴选项①正确;在△AOO′中,∵32+42=52,∴△AOO′为直角三角形,∴∠AOO′=90°,∠AOB=90°+60°=150°,∴选项③正确;∵S四边形AOBO′=×42×sin60°+×3×4=4+6,∴选项④错误;如下图,将△AOB绕A点逆时针旋转60°至△AO″C,连接OO″,同理可得,△AOO″是边长为3的等边三角形,△COO″是边长为3,4,5的直角三角形,∴S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″=×3×4+×32×sin60°=6+.故⑤正确;故答案为:①③⑤.本题考查旋转的性质、三角形全等的判定和性质、等边三角形的判定和性质、勾股定理的逆定理,熟练掌握旋转的性质、等边三角形的判定和性质、勾股定理的逆定理的应用是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)证明见解析;(2)5cm.【解析】

(1)根据题意可知AC=BC,∠ACB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论