2025届江苏省无锡市第一女子中学数学高二上期末质量检测模拟试题含解析_第1页
2025届江苏省无锡市第一女子中学数学高二上期末质量检测模拟试题含解析_第2页
2025届江苏省无锡市第一女子中学数学高二上期末质量检测模拟试题含解析_第3页
2025届江苏省无锡市第一女子中学数学高二上期末质量检测模拟试题含解析_第4页
2025届江苏省无锡市第一女子中学数学高二上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省无锡市第一女子中学数学高二上期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若数列为等比数列,且,,则()A.8 B.16C.32 D.642.已知甲、乙、丙三名同学同时独立地解答一道导数试题,每人均有的概率解答正确,且三个人解答正确与否相互独立,在三人中至少有两人解答正确的条件下,甲解答不正确的概率A. B.C. D.3.已知实数成等比数列,则圆锥曲线的离心率为()A. B.2C.或2 D.或4.2021年小林大学毕业后,9月1日开始工作,他决定给自己开一张储蓄银行卡,每月的10号存钱至该银行卡(假设当天存钱次日到账).2021年9月10日他给卡上存入1元,以后每月存的钱数比上个月多一倍,则他这张银行卡账上存钱总额(不含银行利息)首次达到1万元的时间为()A.2022年12月11日 B.2022年11月11日C.2022年10月11日 D.2022年9月11日5.已知等差数列中,、是的两根,则()A B.C. D.6.在如图所示的棱长为1的正方体中,点P在侧面所在的平面上运动,则下列四个命题中真命题的个数是()①若点P总满足,则动点P的轨迹是一条直线②若点P到点A的距离为,则动点P的轨迹是一个周长为的圆③若点P到直线AB的距离与到点C的距离之和为1,则动点P的轨迹是椭圆④若点P到平面的距离与到直线CD的距离相等,则动点P的轨迹是抛物线A.1 B.2C.3 D.47.中,,,分别为三个内角,,的对边,若,,,则()A. B.C. D.8.已知空间向量,,则()A. B.19C.17 D.9.若不等式在上有解,则的最小值是()A.0 B.-2C. D.10.直线的倾斜角为()A.150° B.120°C.60° D.30°11.若复数,则()A B.C. D.12.函数的定义域是,,对任意,,则不等式的解集为()A. B.C.或 D.或二、填空题:本题共4小题,每小题5分,共20分。13.设、分别是椭圆的左、右焦点.若是该椭圆上的一个动点,则的最大值为_____14.对于实数表示不超过的最大整数,如.已知数列的通项公式,前项和为,则___________.15.已知数列的前项和为,则__________.16.已知等比数列的前n和为,若成等差数列,且,,则的值为_______________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数,(1)求的最大值;(2)求证:对于任意x∈(1,7),e1-x+18.(12分)已知对于,函数有意义,关于k的不等式成立.(1)若为假命题,求k的取值范围;(2)若p是q的必要不充分条件,求m的取值范围.19.(12分)已知的离心率为,短轴长为2,F为右焦点(1)求椭圆的方程;(2)在x轴上是否存在一点M,使得过F的任意一条直线l与椭圆的两个交点A,B,恒有,若存在求出M的坐标,若不存在,说明理由20.(12分)已知圆,直线(1)当直线与圆相交,求的取值范围;(2)当直线与圆相交于、两点,且时,求直线的方程21.(12分)设:,:.(1)若命题“,是真命题”,求的取值范围;(2)若是的充分不必要条件,求的取值范围.22.(10分)在平面直角坐标系xOy中,椭圆C的参数方程为(θ为参数),直线l的参数方程为(t为参数)(Ⅰ)写出椭圆C的普通方程和直线l的倾斜角;(Ⅱ)若点P(1,2),设直线l与椭圆C相交于A,B两点,求|PA|·|PB|的值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】设等比数列的公比为,根据等比数列的通项公式得到,即可求出,再根据计算可得;【详解】解:设等比数列公比为,因为、,所以,所以;故选:B2、C【解析】记“三人中至少有两人解答正确”为事件;“甲解答不正确”为事件,利用二项分布的知识计算出,再计算出,结合条件概率公式求得结果.【详解】记“三人中至少有两人解答正确”为事件;“甲解答不正确”为事件则;本题正确选项:【点睛】本题考查条件概率的求解问题,涉及到利用二项分布公式求解概率的问题.3、C【解析】根据成等比数列求得,再根据离心率计算公式即可求得结果.【详解】因为实数成等比数列,故可得,解得或;当时,表示焦点在轴上的椭圆,此时;当时,表示焦点在轴上的双曲线,此时.故选:C.4、C【解析】分析可得每月所存钱数依次成首项为1,公比为2的等比数列,其前n项和为,分析首次达到1万元的值,即得解【详解】依题意可知,小林从第一个月开始,每月所存钱数依次成首项为1,公比为2的等比数列,其前n项和为.因为为增函数,且,所以第14个月的10号存完钱后,他这张银行卡账上存钱总额首次达到1万元,即2022年10月11日他这张银行卡账上存钱总额首次达到1万元.故选:C5、B【解析】利用韦达定理结合等差中项的性质可求得的值,再结合等差中项的性质可求得结果.【详解】对于方程,,由韦达定理可得,故,则,所以,.故选:B.6、C【解析】根据线面关系、距离关系可分别对每一个命题判断.【详解】若点P总满足,又,,,可得对角面,因此点P的轨迹是直线,故①正确若点P到点A的距离为,则动点P的轨迹是以点B为圆心,以1为半径的圆(在平面内),因此圆的周长为,故②正确点P到直线AB的距离PB与到点C的距离PC之和为1,又,则动点P的轨迹是线段BC,因此③不正确点P到平面的距离(即到直线的距离)与到直线CD的距离(即到点C的距离)相等,则动点P的轨迹是以线段BC的中点为顶点,直线BC为对称轴的抛物线(在平面内),因此④正确故有①②④三个故选:C7、C【解析】利用正弦定理求解即可.【详解】,,,由正弦定理可得,解得,故选:C.8、D【解析】先求出的坐标,再求出其模【详解】因为,,所以,故,故选:D.9、D【解析】将题设条件转化为在上有解,然后求出的最大值即可得解.【详解】不等式在上有解,即为在上有解,设,则在上单调递减,所以,所以,即,故选:D.【点睛】本题主要考查二次不等式能成立问题,可以选择分离参数转化为最值问题,也可以进行分情况讨论.10、D【解析】由斜率得倾斜角【详解】直线的斜率为,所以倾斜角为30°.故选:D11、A【解析】根据复数的乘法运算即可求解.【详解】由,故选:A12、A【解析】构造函数,结合已知条件可得恒成立,可得为上的减函数,再由,从而将不等式转换为,根据单调性即可求解.【详解】构造函数,因为,所以为上的增函数又因为,所以原不等式转化为,即,解得.所以原不等式的解集为,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】设,写出、的坐标,利用向量数量积的坐标表示有,根据椭圆的有界性即可求的最大值.【详解】由题意知:,,若,∴,,∴,而,则,而,∴当时,.故答案为:【点睛】关键点点睛:利用向量数量积的坐标表示及椭圆的有界性求最值.14、54【解析】由,利用裂项相消法求得,再由的定义求解.【详解】由已知可得:,,当时,,;当时,,;当时,,;当时,,;当时,;;所以.故答案为:54.15、【解析】根据题意求得,得到,利用等差数列的求和公式,求得,结合裂项法求和法,即可求解.【详解】由,可得,即,因为,所以,又因为,所以,可得,所以,所以.故答案为:.16、107【解析】根据等比数列和等差数列的通项公式,根据题意列方程可得,从而求出或,再根据,确定,进而求出,代入记得:.【详解】由题意可设等比数列的公比为,首项为,由成等差数列可得:,代入可得:,解得:或,又因为,易知,又因为,,所以,,故答案为:107.【点睛】本题考查了等差中项和等比数列的通项公式,考查了和的关系,同时考查了计算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)求出,讨论其导数后可得原函数的单调性,从而可得函数的最大值.(2)先证明任意的,总有,再利用放缩法和换元法将不等式成立问题转化为任意恒成立,后者可利用导数证明.【小问1详解】,当时,;当时,,故在上为增函数,在上为减函数,故.【小问2详解】因为,故当时,,即,而在为减函数,故在上有,故任意的,总有.要证任意恒成立,即证:任意恒成立,即证:任意恒成立,由(1)可得,任意,有即,故即证:任意恒成立,设,即证:任意恒成立,即证:任意恒成立,即证:任意恒成立,即证:任意恒成立,设,则,而在为增函数,,故存在,使得,且时,,时,,故在为减函数,在为增函数,故任意,总有,故任意恒成立,所以任意恒成立.【点睛】思路点睛:不等式的恒成立,可结合不等式的形式将其转化为若干段上的不等式的恒成立,在每段上可采用不同的方式(导数、放缩法等)进行处理.18、(1)(2)【解析】(1)由与的真假相反,得出为真命题,将定义域问题转化为不等式的恒成立问题,讨论参数的取值,得出答案;(2)由必要不充分条件的定义得出,讨论的取值结合包含关系得出的范围.【详解】解:(1)因为为假命题,所以为真命题,所以对恒成立.当时,不符合题意;当时,则有,则.综上,k的取值范围为.(2)由,得.由(1)知,当为真命题时,则令令因为p是q的必要不充分条件,所以当时,,,解得当时,,符合题意;当时,,符合题意;所以的取值范围是【点睛】本题主要考查了不等式的恒成立问题以及根据必要不充分条件求参数范围,属于中档题.19、(1);(2)存在点M满足条件,点M的坐标为.【解析】(1)根据给定条件直接计算出即可求解作答.(2)假定存在点,当直线l与x轴不重合时,设出l的方程,与椭圆C的方程联立,借助、斜率互为相反数计算得解,再验证直线l与x轴重合的情况即可作答.【小问1详解】依题意,,而离心率,即,解得,所以椭圆C的方程为:.【小问2详解】由(1)知,,假定存在点满足条件,当直线与x轴不重合时,设l的方程为:,由消去x并整理得:,设,则有,因,则直线、斜率互为相反数,于是得:,整理得,即,则有,即,而m为任意实数,则,当直线l与x轴重合时,点A,B为椭圆长轴的两个端点,点也满足,所以存在点M满足条件,点M的坐标为.【点睛】思路点睛:解答直线与椭圆相交的问题,常把直线与椭圆的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.20、(1);(2)或【解析】(1)根据直线与圆的位置关系,利用几何法可得出关于实数的不等式,由此可解得实数的取值范围;(2)根据勾股定理求出圆心到直线的距离,再利用点到直线的距离公式可得出关于实数的值,即可求出直线的方程.【小问1详解】解:圆的标准方程为,圆心为,半径为,因为直线与圆相交,则,解得.【小问2详解】解:因为,则圆心到直线的距离为,由点到直线的距离公式可得,整理得,解得或.所以,直线的方程为或.21、(1)(2)【解析】(1)解不等式得到解集,根据题意列出不等式组,求出的取值范围;(2)先解不等式,再根据充分不必要条件得到是的真子集,进而求出的取值范围.【小问1详解】因为,由可得:,因为“,”为真命题,所以,即,解得:.即的取值范围是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论