




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届宁夏长庆中学高一数学第一学期期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在区间上任取一个数,则函数在上的最大值是3的概率为()A. B.C. D.2.菱形ABCD在平面α内,PC⊥α,则PA与BD的位置关系是()A.平行 B.相交但不垂直C.垂直相交 D.异面且垂直3.若,则的大小关系为.A. B.C. D.4.函数的部分图象大致是图中的()A.. B.C. D.5.已知函数f(x)=a+log2(x2+a)(a>0)的最小值为8,则实数a的取值属于以下哪个范围()A.(5,6) B.(7,8)C.(8,9) D.(9,10)6.若函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|)的部分图象如图所示,将函数f(x)的图象向左平移1个单位长度后,得到函数g(x)的图象,则g(x)=()A.2cosx B.2sinxC.2cosx D.2sinx7.函数的零点所在区间是()A. B.C. D.8.将函数的图像向左、向下各平移1个单位长度,得到的函数图像,则()A. B.C. D.9.函数的图象大致是A. B.C. D.10.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数α是()A.1 B.4C.1或4 D.2或4二、填空题:本大题共6小题,每小题5分,共30分。11.函数的单调递增区间是_________12.已知,则____________.13.如果二次函数在区间上是增函数,则实数的取值范围为________14.已知在上是增函数,则的取值范围是___________.15.已知平面向量,,,,,则的值是______16.已知正四棱锥的底面边长为4cm,高与斜高的夹角为,则该正四棱锥的侧面积等于________cm2三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,若函数的定义域为集合,则当时,求函数的值域.18.已知函数.(1)用“五点法”做出函数在上的简图;(2)若方程在上有两个实根,求a的取值范围.19.在①是函数图象的一条对称轴,②函数的最大值为2,③函数图象与y轴交点的纵坐标是1这三个条件中选取两个补充在下面题目中,并解答已知函数,______(1)求的解析式;(2)求在上的值域20.已知定义域为R的函数是奇函数.(1)求a的值;(2)求不等式的解集.21.设函数()在处取最大值(Ⅰ)求的值;(Ⅱ)在中,分别是角的对边.已知,,,求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】设函数,求出时的取值范围,再根据讨论的取值范围,判断是否能取得最大值,从而求出对应的概率值【详解】在区间上任取一个数,基本事件空间对应区间的长度是,由,得,∴,∴的最大值是或,即最大值是或;令,得,解得;又,∴;∴当时,,∴在上的最大值是,满足题意;当时,,∴函数在上的最大值是,由,得,的最大值不是;2、D【解析】由菱形ABCD平面内,则对角线,又,可得平面,进而可得,又显然,PA与BD不在同一平面内,可判断其位置关系.【详解】假设PA与BD共面,根据条件点和菱形ABCD都在平面内,这与条件相矛盾.故假设不成立,即PA与BD异面.又在菱形ABCD中,对角线,,,则且,所以平面平面.则,所以PA与BD异面且垂直.故选:D【点睛】本题考查异面直线的判定和垂直关系的证明,属于基础题.3、D【解析】由指数函数,对数函数的单调性,求出的大致范围即可得解.【详解】解:因为,,即,故选D.【点睛】本题考查了比较指数值,对数值的大小关系,属基础题.4、D【解析】根据函数的奇偶性及函数值得符号即可得到结果.【详解】解:函数的定义域为R,即∴函数为奇函数,排除A,B,当时,,排除C,故选:D【点睛】函数识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题5、A【解析】根复合函数的单调性,得到函数f(x)的单调性,求解函数的最小值f(x)min=8,构造新函数g(a)=a+log2a-8,利用零点的存在定理,即可求解.【详解】由题意,根复合函数的单调性,可得函数f(x)在[0,+∞)上是增函数,在(-∞,0)上递减,所以函数f(x)的最小值f(x)min=f(0)=a+log2a=8,令g(a)=a+log2a-8,a>0,则g(5)=log25-3<0,g(6)=log26-2>0,又g(a)在(0,+∞)上是增函数,所以实数a所在的区间为(5,6)【点睛】本题主要考查了函数的单调性的应用,以及零点的存在定理的应用,其中解答中根据复合函数的单调性,求得函数的最小值,构造新函数,利用零点的存在定理求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.6、A【解析】观察函数图像,求得,再结合函数图像的平移变换即可得解.详解】解:由图可知,,即,又,所以,即,又由图可知,所以,又,即即,将函数f(x)的图象向左平移1个单位长度后,得到函数g(x)的图象,则,故选:A.【点睛】本题考查了利用函数图像求解析式,重点考查了函数图像的平移变换,属基础题.7、B【解析】判断函数的单调性,根据函数零点存在性定理即可判断.【详解】函数的定义域为,且函数在上单调递减;在上单调递减,所以函数为定义在上的连续减函数,又当时,,当时,,两函数值异号,所以函数的零点所在区间是,故选:B.8、B【解析】根据函数的图象变换的原则,结合对数的运算性质,准确运算,即可求解.【详解】由题意,将函数的图像向左、向下各平移1个单位长度,可得.故选:B.9、A【解析】因为2、4是函数的零点,所以排除B、C;因为时,所以排除D,故选A10、C【解析】根据扇形的弧长公式和面积公式,列出方程组,求得的值,即可求解.【详解】设扇形所在圆的半径为,由扇形的周长是6,面积是2,可得,解得或,又由弧长公式,可得,即,当时,可得;当时,可得,故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设,或为增函数,在为增函数,根据复合函数单调性“同增异减”可知:函数单调递增区间是.12、【解析】求得函数的最小正周期为,进而计算出的值(其中),再利用周期性求解即可.【详解】函数的最小正周期为,当时,,,,,,,所以,,,因此,.故答案为:.13、【解析】函数对称轴为,则由题意可得,解出不等式即可.【详解】∵函数的对称轴为且在区间上是增函数,∴,即.【点睛】已知函数在某个区间上的单调性,则这个区间是这个函数对应单调区间的子集.14、【解析】将整理分段函数形式,由在上单调递增,进而可得,即可求解【详解】由题,,显然,在时,单调递增,因为在上单调递增,所以,即,故答案为:【点睛】本题考查已知函数单调性求参数,考查分段函数,考查一次函数的单调性的应用15、【解析】根据向量垂直向量数量积等于,解得α·β=,再利用向量模的求法,将式子平方即可求解.【详解】由得,所以,所以所以.故答案为:16、32【解析】在正四棱锥的高和斜高所在的直角三角形中计算出斜高后,根据三角形的面积公式即可求出侧面积.【详解】因为正四棱锥的底面边长为4cm,高与斜高的夹角为,所以斜高为cm,所以该正四棱锥的侧面积等于cm2故答案为:32.【点睛】本题考查了正棱锥的结构特征,考查了求正四棱锥的侧面积,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】先求函数的定义域集合,再求函数的值域【详解】由,得,所以函数的值域为【点睛】求函数值域要先准确求出函数的定义域,注意函数解析式有意义的条件,及题目对自变量的限制条件18、(1)答案见解析(2)【解析】(1)根据“五点法”作图法,列表、描点、作图,即可得到结果;(2)将原问题转化为与在上有两个不同的交点,作出函数在的图象,由数形结合即可得到结果.【小问1详解】解:列表:x01131作图:【小问2详解】解:若方程在上有两个实根,则与在上有两个不同交点,因为,所以作出函数在的图象,如下图所示:又,,,,由图象可得,或,故a的取值范围是.19、(1)条件选择见解析,;(2).【解析】(1)选择①②直接求出A及的解;选择①③,先求出,再由求A作答;选择②③,直接可得A,再由求作答.(2)由(1)结合正弦函数的性质即可求得在上的值域.【小问1详解】选择①②,,由及得:,所以的解析式是:.选择①③,由及得:,即,而,则,即,解得,所以的解析式是:.选择②③,,而,即,又,则有,所以的解析式是:.【小问2详解】由(1)知,,当时,,则当,即时,,当,即时,,所以函数在上的值域是.20、(1);(2).【解析】(1)利用奇函数的必要条件,,求出,进而再验证此时为奇函数;(2),要用函数的单调性,将复合不等式转化,所以考虑分离常数,化简为,判断在是增函数,可得不等式,转化为求指数幂不等式,即可求解.【详解】(1)函数是奇函数,,,;(2),令,解得,化,在上增函数,且,所以在是增函数,等价于,,所以不等式的解集为.【点睛】本题考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论