2025届朔州市重点中学数学高二上期末检测试题含解析_第1页
2025届朔州市重点中学数学高二上期末检测试题含解析_第2页
2025届朔州市重点中学数学高二上期末检测试题含解析_第3页
2025届朔州市重点中学数学高二上期末检测试题含解析_第4页
2025届朔州市重点中学数学高二上期末检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届朔州市重点中学数学高二上期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲,西方人称之为“中国剩余定理”.现有这样一个问题:将1到200中被3整除余1且被4整除余2的数按从小到大的顺序排成一列,构成数列,则=()A.130 B.132C.140 D.1442.某中学的校友会为感谢学校的教育之恩,准备在学校修建一座四角攒尖的思源亭如图它的上半部分的轮廓可近似看作一个正四棱锥,已知此正四棱锥的侧面与底面所成的二面角为30°,侧棱长为米,则以下说法不正确()A.底面边长为6米 B.体积为立方米C.侧面积为平方米 D.侧棱与底面所成角的正弦值为3.双曲线的渐近线的斜率是()A.1 B.C. D.4.已知直线l和两个不同的平面,,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.若曲线表示圆,则m的取值范围是()A. B.C. D.6.已知,为椭圆上关于短轴对称的两点,、分别为椭圆的上、下顶点,设,、分别为直线,的斜率,则的最小值为()A. B.C. D.7.直线l:的倾斜角为()A. B.C. D.8.若直线与圆只有一个公共点,则m的值为()A. B.C. D.9.数学家歌拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线.已知的三个顶点分别为,,,则的欧拉线方程是()A. B.C. D.10.设,,,…,,,则()A. B.C. D.11.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件12.下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则二、填空题:本题共4小题,每小题5分,共20分。13.已知过点作抛物线的两条切线,切点分别为A,B,直线AB经过抛物线C的焦点F,则___________14.已知满足约束条件,则的最小值为___________15.不等式的解集是___________.16.如图,正方体的棱长为1,P为BC的中点,Q为线段上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是_________(写出所有正确命题的编号).①当时,S为四边形;②当时,S为等腰梯形;③当时,S与的交点R满足;④当时,S为六边形;⑤当时,S的面积为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某学校一航模小组进行飞机模型飞行高度实验,飞机模型在第一分钟时间内上升了米高度.若通过动力控制系统,可使飞机模型在以后的每一分钟上升的高度都是它在前一分钟上升高度的(1)在此动力控制系统下,该飞机模型在第三分钟内上升的高度是多少米?(2)这个飞机模型上升的最大高度能超过米吗?如果能,求出从第几分钟开始高度超过米;如果不能,请说明理由18.(12分)已知抛物线的焦点为,点在抛物线上,且的面积为(为坐标原点)(1)求抛物线的标准方程;(2)点、是抛物线上异于原点的两点,直线、的斜率分别为、,若,求证:直线恒过定点19.(12分)在平面直角坐标系xOy中,已知椭圆的离心率为,且短轴长为2.(1)求椭圆C的方程;(2)设椭圆C的上顶点为B,右焦点为F,直线l与椭圆交于M,N两点,问是否存在直线l,使得F为的垂心,若存在,求出直线l的方程;若不存在,说明理由.20.(12分)已知数列,若_________________(1)求数列的通项公式;(2)求数列的前项和从下列三个条件中任选一个补充在上面的横线上,然后对题目进行求解①;②,,;③,点,在斜率是2的直线上21.(12分)已知圆的圆心在直线上,且过点(1)求圆的方程;(2)已知直线经过原点,并且被圆截得的弦长为2,求直线l的方程.22.(10分)如图,在直三棱柱中,,,.M为侧棱的中点,连接,,CM.(1)证明:AC平面;(2)证明:平面;(3)求二面角的大小.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分析数列的特点,可知其是等差数列,写出其通项公式,进而求得结果,【详解】被3整除余1且被4整除余2的数按从小到大的顺序排成一列,这样的数构成首项为10,公差为12的等差数列,所以,故,故选:A2、D【解析】连接底面正方形的对角线交于点,连接,则为该正四棱锥的高,即平面,取的中点,连接,则的大小为侧面与底面所成,设正方形的边长为,求出该正四棱锥的底面边长,斜高和高,然后对选项进行逐一判断即可.【详解】连接底面正方形的对角线交于点,连接则为该正四棱锥的高,即平面取的中点,连接,由正四棱锥的性质,可得由分别为的中点,所以,则所以为二面角的平面角,由条件可得设正方形的边长为,则,又则,解得故选项A正确.所以,则该正四棱锥的体积为,故选项B正确.该正四棱锥的侧面积为,故选项C正确.由题意为侧棱与底面所成角,则,故选项D不正确.故选:D3、B【解析】由双曲线的渐近线方程为:,化简即可得到答案.【详解】双曲线的渐近线方程为:,即,渐近线的斜率是.故选:B4、D【解析】根据直线、平面的位置关系,应用定义法判断两个条件之间的充分、必要性.【详解】当,时,直线l可与平行、相交,故不一定成立,即充分性不成立;当,时,直线l可在平面内,故不一定成立,即必要性不成立.故选:D.5、C【解析】按照圆的一般方程满足的条件求解即可.【详解】或.故选:C.6、A【解析】设出点,的坐标,并表示出两个斜率、,把代数式转化成与点的坐标相关的代数式,再与椭圆有公共点解决即可.【详解】椭圆中:,设则,则,,令,则它对应直线由整理得由判别式解得即,则的最小值为故选:A7、D【解析】先求得直线的斜率,由此求得倾斜角.【详解】依题意,直线的斜率为,倾斜角的范围为,则倾斜角为.故选:D.8、D【解析】利用圆心到直线的距离等于半径列方程,化简求得的值.【详解】圆的圆心为,半径为,直线与圆只有一个公共点,所以直线与圆相切,所以.故选:D9、B【解析】根据的三个顶点坐标,先求解出重心的坐标,然后再根据三个点坐标求解任意两条垂直平分线的方程,联立方程,即可算出外心的坐标,最后根据重心和外心的坐标使用点斜式写出直线方程.【详解】由题意可得的重心为.因为,,所以线段的垂直平分线的方程为.因为,,所以直线的斜率,线段的中点坐标为,则线段的垂直平分线的方程为.联立,解得,则的外心坐标为,故的欧拉线方程是,即故选:B.10、B【解析】根据已知条件求得的规律,从而确定正确选项.【详解】,,,,,……,以此类推,,所以.故选:B11、B【解析】求出的等价条件,结合充分条件和必要条件的定义判断可得出结论.【详解】,因“”“”且“”“”,因此,“”是“”的必要不充分条件.故选:B.12、C【解析】先举例说明ABD不成立,再根据不等式性质说明C成立.【详解】当时,满足,但不成立,所以A错;当时,满足,但不成立,所以B错;当时,满足,但不成立,所以D错;因为所以,又,因此同向不等式相加得,即C对;故选:C【点睛】本题考查不等式性质,考查基本分析判断能力,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设出点的坐标,与抛物线方程联立,结合题意和韦达定理,求得抛物线的方程为,直线AB的方程为,进而求得的值.【详解】设,在抛物线,过切点A与抛物线相切的直线的斜率为,则以为切点的切线方程为,联立方程组,整理得,则,整理得,所以,解得,所以以为切点的切线方程为,即,同理,设,在抛物线,过切点B与抛物线相切的直线,又因为在切线和,所以,所以直线AB的方程为,又直线AB过抛物线的焦点,所以令,可得,即,所以抛物线的方程为,直线AB的方程为,联立方程组,整理得或,所以,所以.故答案为:.14、【解析】根据题意,作出可行域,进而根据几何意义求解即可.【详解】解:作出可行域如图,将变形为,所以根据几何意义,当直线过点时,有最小值,所以联立方程得,所以的最小值为故答案为:15、##【解析】将分式不等式等价转化为不等式组,求解即得.【详解】原不等式等价于,解得,故答案为:.16、①②③⑤【解析】①由如图当点向移动时,满足,只需在上取点满足,即可得截面为四边形,如图所示,是四边形,故①正确;②当时,即为中点,此时可得PQ∥AD,AP=QD==,故可得截面APQD为等腰梯形,等腰梯形,故②正确;③当时,如图,延长至,使,连接交于,连接交于,连接,可证,由∽,可得,故可得,故③正确;④由③可知当时,只需点上移即可,此时的截面形状仍然如图所示的,如图是五边形,故④不正确;⑤当时,与重合,取的中点,连接,可证,且,可知截面为为菱形,故其面积为,如图是菱形,面积为,故⑤正确,故答案为①②③⑤考点:正方体的性质.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)不能,理由见解析.【解析】(1)由题得每分钟上升的高度构成等比数列,再利用等比数列的通项求解;(2)求出即得解.【小问1详解】解:由题意,飞机模型每分钟上升的高度构成,公比的等比数列,则米.即飞机模型在第三分钟内上升的高度是米.【小问2详解】解:不能超过米.依题意可得,所以这个飞机模型上升的最大高度不能超过米.18、(1);(2)证明见解析.【解析】(1)由点在抛物线上可得出,再利用三角形的面积公式可得出关于的等式,解出正数的值,即可得出抛物线的标准方程;(2)设点、,利用斜率公式结合已知条件可得出的值,分析可知直线不与轴垂直,可设直线的方程为,将该直线方程与抛物线的方程联立,利用韦达定理求出的值,即可得出结论.【小问1详解】解:抛物线的焦点为,由已知可得,则,,,解得,因此,抛物线的方程为.【小问2详解】证明:设点、,则,可得.若直线轴,则该直线与抛物线只有一个交点,不合乎题意.设直线的方程为,联立,可得,由韦达定理可得,可得,此时,合乎题意.所以,直线的方程为,故直线恒过定点.19、(1)(2)存在,【解析】(1)根据离心率及短轴长,利用椭圆中的关系可以求出椭圆方程;(2)设直线的方程,与椭圆方程联立,根据一元二次方程根与系数关系,结合已知和斜率公式,可以求出直线的方程.【小问1详解】,,,,椭圆的标准方程为.【小问2详解】由已知可得,,,∴,∵,设直线的方程为:,代入椭圆方程整理得,设,,则,,∵,∴.即,因为,,即..所以,或.又时,直线过点,不合要求,所以.故存在直线:满足题设条件.20、答案见解析.【解析】(1)若选①,根据通项公式与前项和的关系求解通项公式即可;若选②,根据可得数列为等差数列,利用基本量法求解通项公式即可;若选③,根据两点间的斜率公式可得,可得数列为等差数列进而求得通项公式;(2)利用裂项相消求和即可【详解】解:(1)若选①,由,所以当,,两式相减可得:,而在中,令可得:,符合上式,故若选②,由(,)可得:数列为等差数列,又因为,,所以,即,所以若选③,由点,在斜率是2的直线上得:,即,所以数列为等差数列且(2)由(1)知:,所以21、(1);(2)或.【解析】(1)根据题意设圆心坐标为,进而得,解得,故圆的方程为(2)分直线的斜率存在和不存在两种情况讨论求解即可.【详解】(1)圆的圆心在直线上,设所求圆心坐标为∵过点,解得∴所求圆的方程为(2)直线经过原点,并且被圆截得的弦长为2①当直线的斜率不存在时,直线的方程为,此时直线被圆截得的弦长为2,满足条件;②当直线的斜率存在时,设直线的方程为,由于直线被圆截得的弦长为,故圆心到直线的距离为故由点到直线的距离公式得:解得,所以直线l的方程为综上所述,则直线l的方程为或【点睛】易错点点睛:本题第二问在解题的过程中要注意直线斜率不存在情况的讨论,即分直线的斜率存在和不存在两种,避免在解题的过程中忽视斜率不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论