




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届绥化市重点中学数学高三上期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在三棱锥中,平面,,现从该三棱锥的个表面中任选个,则选取的个表面互相垂直的概率为()A. B. C. D.2.若双曲线的离心率为,则双曲线的焦距为()A. B. C.6 D.83.已知角的终边经过点,则A. B.C. D.4.小明有3本作业本,小波有4本作业本,将这7本作业本混放在-起,小明从中任取两本.则他取到的均是自己的作业本的概率为()A. B. C. D.5.执行下面的程序框图,则输出的值为()A. B. C. D.6.已知函数(,是常数,其中且)的大致图象如图所示,下列关于,的表述正确的是()A., B.,C., D.,7.关于函数,有下列三个结论:①是的一个周期;②在上单调递增;③的值域为.则上述结论中,正确的个数为()A. B. C. D.8.已知函数(e为自然对数底数),若关于x的不等式有且只有一个正整数解,则实数m的最大值为()A. B. C. D.9.是边长为的等边三角形,、分别为、的中点,沿把折起,使点翻折到点的位置,连接、,当四棱锥的外接球的表面积最小时,四棱锥的体积为()A. B. C. D.10.函数的最大值为,最小正周期为,则有序数对为()A. B. C. D.11.“角谷猜想”的内容是:对于任意一个大于1的整数,如果为偶数就除以2,如果是奇数,就将其乘3再加1,执行如图所示的程序框图,若输入,则输出的()A.6 B.7 C.8 D.912.已知函数,若时,恒成立,则实数的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.对定义在上的函数,如果同时满足以下两个条件:(1)对任意的总有;(2)当,,时,总有成立.则称函数称为G函数.若是定义在上G函数,则实数a的取值范围为________.14.若向量与向量垂直,则______.15.已知为等比数列,是它的前项和.若,且与的等差中项为,则__________.16.若,i为虚数单位,则正实数的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为了解广大学生家长对校园食品安全的认识,某市食品安全检测部门对该市家长进行了一次校园食品安全网络知识问卷调查,每一位学生家长仅有一次参加机会,现对有效问卷进行整理,并随机抽取出了200份答卷,统计这些答卷的得分(满分:100分)制出的频率分布直方图如图所示,由频率分布直方图可以认为,此次问卷调查的得分服从正态分布,其中近似为这200人得分的平均值(同一组数据用该组区间的中点值作为代表).(1)请利用正态分布的知识求;(2)该市食品安全检测部门为此次参加问卷调查的学生家长制定如下奖励方案:①得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费:②每次获赠的随机话费和对应的概率为:获赠的随机话费(单位:元)概率市食品安全检测部门预计参加此次活动的家长约5000人,请依据以上数据估计此次活动可能赠送出多少话费?附:①;②若;则,,.18.(12分)如图,三棱锥中,点,分别为,的中点,且平面平面.求证:平面;若,,求证:平面平面.19.(12分)选修4-5:不等式选讲已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).(1)当m=7时,求函数f(x)的定义域;(2)若关于x的不等式f(x)≥2的解集是R,求m的取值范围.20.(12分)已知数列,满足.(1)求数列,的通项公式;(2)分别求数列,的前项和,.21.(12分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,整理如下:甲公司员工:410,390,330,360,320,400,330,340,370,350乙公司员工:360,420,370,360,420,340,440,370,360,420每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件0.65元,乙公司规定每天350件以内(含350件)的部分每件0.6元,超出350件的部分每件0.9元.(1)根据题中数据写出甲公司员工在这10天投递的快件个数的平均数和众数;(2)为了解乙公司员工每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为(单位:元),求的分布列和数学期望;(3)根据题中数据估算两公司被抽取员工在该月所得的劳务费.22.(10分)已知函数(mR)的导函数为.(1)若函数存在极值,求m的取值范围;(2)设函数(其中e为自然对数的底数),对任意mR,若关于x的不等式在(0,)上恒成立,求正整数k的取值集合.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据线面垂直得面面垂直,已知平面,由,可得平面,这样可确定垂直平面的对数,再求出四个面中任选2个的方法数,从而可计算概率.【详解】由已知平面,,可得,从该三棱锥的个面中任选个面共有种不同的选法,而选取的个表面互相垂直的有种情况,故所求事件的概率为.故选:A.【点睛】本题考查古典概型概率,解题关键是求出基本事件的个数.2、A【解析】
依题意可得,再根据离心率求出,即可求出,从而得解;【详解】解:∵双曲线的离心率为,所以,∴,∴,双曲线的焦距为.故选:A【点睛】本题考查双曲线的简单几何性质,属于基础题.3、D【解析】因为角的终边经过点,所以,则,即.故选D.4、A【解析】
利用计算即可,其中表示事件A所包含的基本事件个数,为基本事件总数.【详解】从7本作业本中任取两本共有种不同的结果,其中,小明取到的均是自己的作业本有种不同结果,由古典概型的概率计算公式,小明取到的均是自己的作业本的概率为.故选:A.【点睛】本题考查古典概型的概率计算问题,考查学生的基本运算能力,是一道基础题.5、D【解析】
根据框图,模拟程序运行,即可求出答案.【详解】运行程序,,
,,,,,结束循环,故输出,故选:D.【点睛】本题主要考查了程序框图,循环结构,条件分支结构,属于中档题.6、D【解析】
根据指数函数的图象和特征以及图象的平移可得正确的选项.【详解】从题设中提供的图像可以看出,故得,故选:D.【点睛】本题考查图象的平移以及指数函数的图象和特征,本题属于基础题.7、B【解析】
利用三角函数的性质,逐个判断即可求出.【详解】①因为,所以是的一个周期,①正确;②因为,,所以在上不单调递增,②错误;③因为,所以是偶函数,又是的一个周期,所以可以只考虑时,的值域.当时,,在上单调递增,所以,的值域为,③错误;综上,正确的个数只有一个,故选B.【点睛】本题主要考查三角函数的性质应用.8、A【解析】
若不等式有且只有一个正整数解,则的图象在图象的上方只有一个正整数值,利用导数求出的最小值,分别画出与的图象,结合图象可得.【详解】解:,∴,设,∴,当时,,函数单调递增,当时,,函数单调递减,∴,当时,,当,,函数恒过点,分别画出与的图象,如图所示,,若不等式有且只有一个正整数解,则的图象在图象的上方只有一个正整数值,∴且,即,且∴,故实数m的最大值为,故选:A【点睛】本题考查考查了不等式恒有一正整数解问题,考查了利用导数研究函数的单调性,考查了数形结合思想,考查了数学运算能力.9、D【解析】
首先由题意得,当梯形的外接圆圆心为四棱锥的外接球球心时,外接球的半径最小,通过图形发现,的中点即为梯形的外接圆圆心,也即四棱锥的外接球球心,则可得到,进而可根据四棱锥的体积公式求出体积.【详解】如图,四边形为等腰梯形,则其必有外接圆,设为梯形的外接圆圆心,当也为四棱锥的外接球球心时,外接球的半径最小,也就使得外接球的表面积最小,过作的垂线交于点,交于点,连接,点必在上,、分别为、的中点,则必有,,即为直角三角形.对于等腰梯形,如图:因为是等边三角形,、、分别为、、的中点,必有,所以点为等腰梯形的外接圆圆心,即点与点重合,如图,,所以四棱锥底面的高为,.故选:D.【点睛】本题考查四棱锥的外接球及体积问题,关键是要找到外接球球心的位置,这个是一个难点,考查了学生空间想象能力和分析能力,是一道难度较大的题目.10、B【解析】函数(为辅助角)∴函数的最大值为,最小正周期为故选B11、B【解析】
模拟程序运行,观察变量值可得结论.【详解】循环前,循环时:,不满足条件;,不满足条件;,不满足条件;,不满足条件;,不满足条件;,满足条件,退出循环,输出.故选:B.【点睛】本题考查程序框图,考查循环结构,解题时可模拟程序运行,观察变量值,从而得出结论.12、D【解析】
通过分析函数与的图象,得到两函数必须有相同的零点,解方程组即得解.【详解】如图所示,函数与的图象,因为时,恒成立,于是两函数必须有相同的零点,所以,解得.故选:D【点睛】本题主要考查函数的图象的综合应用和函数的零点问题,考查不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由不等式恒成立问题采用分离变量最值法:对任意的恒成立,解得,又在,恒成立,即,所以,从而可得.【详解】因为是定义在上G函数,所以对任意的总有,则对任意的恒成立,解得,当时,又因为,,时,总有成立,即恒成立,即恒成立,又此时的最小值为,即恒成立,又因为解得.故答案为:【点睛】本题是一道函数新定义题目,考查了不等式恒成立求参数的取值范围,考查了学生分析理解能力,属于中档题.14、0【解析】
直接根据向量垂直计算得到答案.【详解】向量与向量垂直,则,故.故答案为:.【点睛】本题考查了根据向量垂直求参数,意在考查学生的计算能力.15、【解析】
设等比数列的公比为,根据题意求出和的值,进而可求得和的值,利用等比数列求和公式可求得的值.【详解】由等比数列的性质可得,,由于与的等差中项为,则,则,,,,,因此,.故答案为:.【点睛】本题考查等比数列求和,解答的关键就是等比数列的公比,考查计算能力,属于基础题.16、【解析】
利用复数模的运算性质,即可得答案.【详解】由已知可得:,,解得.故答案为:.【点睛】本题考查复数模的运算性质,考查推理能力与计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)估计此次活动可能赠送出100000元话费【解析】
(1)根据正态分布的性质可求的值.(2)设某家长参加活动可获赠话费为元,利用题设条件求出其分布列,再利用公式求出其期望后可得计此次活动可能赠送出的话费数额.【详解】(1)根据题中所给的统计表,结合题中所给的条件,可以求得又,,所以;(2)根据题意,某家长参加活动可获赠话费的可能值有10,20,30,40元,且每位家长获得赠送1次、2次话费的概率都为,得10元的情况为低于平均值,概率,得20元的情况有两种,得分低于平均值,一次性获20元话费;得分不低于平均值,2次均获赠10元话费,概率,得30元的情况为:得分不低于平均值,一次获赠10元话费,另一次获赠20元话费,其概率为,得40元的其情况得分不低于平均值,两次机会均获20元话费,概率为.所以变量的分布列为:某家长获赠话费的期望为.所以估计此次活动可能赠送出100000元话费.【点睛】本题考查正态分布、离散型随机变量的分布列及数学期望,注意与正态分布有关的计算要利用该分布的密度函数图象的对称性来进行,本题属于中档题.18、证明见解析;证明见解析.【解析】
利用线面平行的判定定理求证即可;为中点,为中点,可得,,,可知,故为直角三角形,,利用面面垂直的判定定理求证即可.【详解】解:证明:为中点,为中点,,又平面,平面,平面;证明:为中点,为中点,,又,,则,故为直角三角形,,平面平面,平面平面,,平面,平面,又∵平面,平面平面.【点睛】本题考查线面平行和面面垂直的判定定理的应用,属于基础题.19、(1),(2)【解析】试题分析:用零点分区间讨论法解含绝对值的不等式,根据绝对值三角不等式得出,不等式|x+1|+|x﹣2|≥m+4解集是R,只需m+4≤3,得出的范围.试题解析:(1)由题设知:|x+1|+|x﹣2|>7,不等式的解集是以下不等式组解集的并集:,或,或,解得函数f(x)的定义域为(﹣∞,﹣3)∪(4,+∞).(2)不等式f(x)≥2即|x+1|+|x﹣2|≥m+4,∵x∈R时,恒有|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3,不等式|x+1|+|x﹣2|≥m+4解集是R,∴m+4≤3,m的取值范围是(﹣∞,﹣1].20、(1)(2);【解析】
(1),,可得为公比为2的等比数列,可得为公差为1的等差数列,再算出,的通项公式,解方程组即可;(2)利用分组求和法解决.【详解】(1)依题意有又.可得数列为公比为2的等比数列,为公差为1的等差数列,由,得解得故数列,的通项公式分别为.(2),.【点睛】本题考查利用递推公式求数列的通项公式以及分组求和法求数列的前n项和,考查学生的计算能力,是一道中档题.21、(1)平均数为360,众数为330;(2)见详解;(3)甲公司:7020(元),乙公司:7281(元)【解析】
(1)将图中甲公司员工A的所有数据相加,再除以总的天数10,即可求出甲公司员工A投递快递件数的平均数.从中发现330出现的次数最多,故为众数;(2)由题意能求出的可能取值为340,360,370,420,440
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030中国旅客保安设备行业产业运行态势及投资规划深度研究报告
- 大数据应用案例分析报告书
- 河北省2025届11月阶段调研检测二试题及答案数学答案
- 商业合作框架协议协议书书
- 家庭装修设计与施工规范
- 农业资源利用规划与监督协议
- 红灯罢工记600字9篇
- 历年汽车修理工(技师)考试题库及答案
- 给生命一个真诚的微笑1000字(13篇)
- 作文以端午节750字(8篇)
- 厌氧罐负压失稳处理方案
- 麻风病防治知识竞赛题库填空题
- 前列腺病人的心理护理
- 互联网护理管理
- 骨科降低卧床患者便秘发生率医院护理质量QCC改善案例
- 《业务员基本素质》课件
- 物联网工程专业介绍
- 成人高考成考英语(高起专)试题及答案指导(2025年)
- 血液透析中低血压的预防及处理
- (高清稿)DB44∕T 2515-2024 水利工程水文化设计导则
- 市场调研表格模板
评论
0/150
提交评论