山西省临县高级中学2024-2025学年数学九上开学学业水平测试模拟试题【含答案】_第1页
山西省临县高级中学2024-2025学年数学九上开学学业水平测试模拟试题【含答案】_第2页
山西省临县高级中学2024-2025学年数学九上开学学业水平测试模拟试题【含答案】_第3页
山西省临县高级中学2024-2025学年数学九上开学学业水平测试模拟试题【含答案】_第4页
山西省临县高级中学2024-2025学年数学九上开学学业水平测试模拟试题【含答案】_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页山西省临县高级中学2024-2025学年数学九上开学学业水平测试模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在正方形ABCD中,E是对角线BD上一点,且满足=AD,连接CE并延长交AD于点F,连接AE,过点B作于点G,延长BG交AD于点H.在下列结论中:①;②;③.其中不正确的结论有()A.0个 B.1个 C.2个 D.3个2、(4分)如图,在框中解分式方程的4个步骤中,根据等式基本性质的是()A.①③ B.①② C.②④ D.③④3、(4分)下列函数中,一定是一次函数的是A. B. C. D.4、(4分)袋中有红球4个,白球若干个,它们只有颜色上的区别,从袋中随机地取出一个球,如果取得白球的可能性较大,那么袋中白球可能有()A.3个 B.不足3个C.4个 D.5个或5个以上5、(4分)使代数式有意义的x的取值范围是()A.x≥0 B. C.x取一切实数 D.x≥0且6、(4分)一个多边形的内角和与外角和相等,则这个多边形的边数为()A.8 B.6 C.5 D.47、(4分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.88、(4分)如图是反比例函数和在第一象限的图象,直线轴,并分别交两条曲线于两点,若,则的值是()A.1 B.2 C.4 D.8二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,平行四边形的周长为,相交于点,交于点,则的周长为________.10、(4分)方程的两个根是和,则的值为____.11、(4分)如图,平行四边形ABCD的周长为20,对角线AC、BD交于点O,E为CD的中点,BD=6,则△DOE的周长为_________.12、(4分)已知正方形的一条对角线长为cm,则该正方形的边长为__________cm.13、(4分)已知有两点A(1,y1)、B(-2,y2)都在一次函数三、解答题(本大题共5个小题,共48分)14、(12分)如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=8cm,BC=10cm,AB=6cm,点Q从点A出发以1cm/s的速度向点D运动,点P从点B出发以2cm/s的速度向点C运动,P,Q两点同时出发,当点P到达点C时,两点同时停止运动.若设运动时间为t(s)(1)直接写出:QD=______cm,PC=_______cm;(用含t的式子表示)(2)当t为何值时,四边形PQDC为平行四边形?(3)若点P与点C不重合,且DQ≠DP,当t为何值时,△DPQ是等腰三角形?15、(8分)如图,已知正方形ABCD的对角线AC、BD交于点O,CE⊥AC与AD边的延长线交于点E.(1)求证:四边形BCED是平行四边形;(2)延长DB至点F,联结CF,若CF=BD,求∠BCF的大小.16、(8分)计算:÷2+()()-.17、(10分)年“双十—”来临之际,某网点以每件元的价格购进件衬衫以每件元的价格迅速售罄,所以该网店第二个月再次购进一批同款衬衫迎接“双十一”,与第一批衬衫相比,这批衬衫的进价和数量都有一定的提高,其数量的增长率是进价增长率的倍,该批衬衫仍以每件元销售,十二月十二日下午六点,商店对剩余的件衬衫以每件的价格一次性清仓销售,商店出售这两批衬衫共盈利元,设第二批衬衫进价的增长率为.(1)第二批衬衫进价为____________元,购进的数量为_____________件.(都用含的代数式表示)(2)求的值.18、(10分)已知:甲、乙两车分别从相距300千米的两地同时出发相向而行,其中甲到地后立即返回,下图是它们离各自出发地的距离(千米)与行驶时间(小时)之间的函数图象.(1)求甲车离出发地的距离(千米)与行驶时间(小时)之间的函数关系式,并写出自变量的取值范围;(2)当它们行驶到与各自出发地的距离相等时,用了小时,求乙车离出发地的距离(千米)与行驶时间(小时)之间的函数关系式;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,已知正方形ABCD,点E在AB上,点F在BC的延长线上,将正方形ABCD沿直线EF翻折,使点B刚好落在AD边上的点G处,连接GF交CD于点H,连接BH,若AG=4,DH=6,则BH=_____.20、(4分)计算:×=____________.21、(4分)学校篮球队五名队员的年龄分别为,其方差为,则三年后这五名队员年龄的方差为______.22、(4分)学校位于小亮家北偏东35方向,距离为300m,学校位于大刚家南偏东85°方向,距离也为300m,则大刚家相对于小亮家的位置是________.23、(4分)如图,在△ABC中,AB=5,BC=7,EF是△ABC的中位线,则EF的长度范围是________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,以△ABC的各边,在边BC的同侧分别作三个正方形ABDI,BCFE,ACHG.(1)求证:△BDE≌△BAC;(2)求证:四边形ADEG是平行四边形.(3)直接回答下面两个问题,不必证明:①当△ABC满足条件_____________________时,四边形ADEG是矩形.②当△ABC满足条件_____________________时,四边形ADEG是正方形?25、(10分)如图所示,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.26、(12分)已知:梯形中,,联结(如图1).点沿梯形的边从点移动,设点移动的距离为,.(1)求证:;(2)当点从点移动到点时,与的函数关系(如图2)中的折线所示.试求的长;(3)在(2)的情况下,点从点移动的过程中,是否可能为等腰三角形?若能,请求出所有能使为等腰三角形的的取值;若不能,请说明理由.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】

先判断出∠DAE=∠ABH,再判断△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判断出Rt△ABH≌Rt△DCF从而得到①正确,根据三角形的外角求出∠AEF=45°,得出②正确;连接HE,判断出S△EFH≠S△EFD得出③错误.【详解】∵BD是正方形ABCD的对角线,∴∠ABE=∠ADE=∠CDE=45°,AB=BC,∵BE=BC,∴AB=BE,∵BG⊥AE,∴BH是线段AE的垂直平分线,∠ABH=∠DBH=22.5°,在Rt△ABH中,∠AHB=90°-∠ABH=67.5°,∵∠AGH=90°,∴∠DAE=∠ABH=22.5°,在△ADE和△CDE中,∴△ADE≌△CDE,∴∠DAE=∠DCE=22.5°,∴∠ABH=∠DCF,在Rt△ABH和Rt△DCF中,∴Rt△ABH≌Rt△DCF,∴AH=DF,∠CFD=∠AHB=67.5°,∵∠CFD=∠EAF+∠AEF,∴67.5°=22.5°+∠AEF,∴∠AEF=45°,故①②正确;如图,连接HE,∵BH是AE垂直平分线,∴AG=EG,∴S△AGH=S△HEG,∵AH=HE,∴∠AHG=∠EHG=67.5°,∴∠DHE=45°,∵∠ADE=45°,∴∠DEH=90°,∠DHE=∠HDE=45°,∴EH=ED,∴△DEH是等腰直角三角形,∵EF不垂直DH,∴FH≠FD,∴S△EFH≠S△EFD,∴S四边形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故③错误,故选B.此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和和三角形外角的性质,解本题的关键是判断出△ADE≌△CDE,难点是作出辅助线.2、A【解析】

根据等式的性质1,等式的两边都加或减同一个整式,结果不变,根据等式的性质1,等式的两边都乘或除以同一个不为零的整式,结果不变,可得答案.【详解】①根据等式的性质1,等式的两边都乘同一个不为零的整式x﹣1,结果不变;②根据去括号法则;③根据等式的性质1,等式的两边都加同一个整式3﹣x,结果不变;④根据合并同类项法则.根据等式基本性质的是①③.故选A.本题考查了等式的性质,利用了等式的性质1,等式的性质1.3、A【解析】

根据一次函数的定义,逐一分析四个选项,此题得解.【详解】解:、,是一次函数,符合题意;、自变量的次数为,不是一次函数,不符合题意;、自变量的次数为2,不是一次函数,不符合题意;、当时,函数为常数函数,不是一次函数,不符合题意.故选:.本题考查了一次函数的定义,牢记一次函数的定义是解题的关键.4、D【解析】根据取到白球的可能性较大可以判断出白球的数量大于红球的数量,从而得解.解:∵袋中有红球4个,取到白球的可能性较大,∴袋中的白球数量大于红球数量,即袋中白球的个数可能是5个或5个以上.故选D.5、D【解析】试题分析:根据题意可得:当x≥0且3x﹣1≠0时,代数式有意义,解得:x≥0且.故选D.考点:1.二次根式有意义的条件;2.分式有意义的条件.6、D【解析】

利用多边形的内角和与外角和公式列出方程,然后解方程即可.【详解】设多边形的边数为n,根据题意

(n-2)•180°=360°,

解得n=1.

故选:D.本题考查了多边形的内角和公式与多边形的外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.7、A【解析】试题分析:构造等腰三角形,①分别以A,B为圆心,以AB的长为半径作圆;②作AB的中垂线.如图,一共有5个C点,注意,与B重合及与AB共线的点要排除.故答案选A.考点:等腰三角形的判定;坐标与图形性质.8、D【解析】

根据题意,由轴,设点B(a,b),点A为(m,n),则,,由,根据反比例函数的几何意义,即可求出的值.【详解】解:如图是反比例函数和在第一象限的图象,∵直线轴,设点B(a,b),点A为(m,n),∴,,∵,∴,∴;故选:D.本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】

根据平行四边形性质得出AD=BC,AB=CD,OA=OC,根据线段垂直平分线得出AE=CE,求出CD+DE+EC=AD+CD,代入求出即可.【详解】解:∵平行四边形ABCD,

∴AD=BC,AB=CD,OA=OC,

∵EO⊥AC,

∴AE=EC,

∵AB+BC+CD+AD=16,

∴AD+DC=1,

∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=1,

故答案为1.本题考查了平行四边形性质、线段垂直平分线性质的应用,关键是求出AE=CE,主要培养学生运用性质进行推理的能力,题目较好,难度适中.10、【解析】

根据韦达定理求解即可.【详解】∵方程的两个根是和∴由韦达定理得故答案为:.本题考查了一元二次方程根的问题,掌握韦达定理是解题的关键.11、1.【解析】试题分析:∵▱ABCD的周长为20cm,∴2(BC+CD)=20,则BC+CD=2.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=6,∴OD=OB=BD=3.又∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD,∴OE=BC,∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=5+3=1,即△DOE的周长为1.故答案是1.考点:三角形中位线定理.12、【解析】

根据正方形性质可知:正方形的一条角平分线即为对角线,对角线和正方形的两条相邻的边构成等腰直角三角形,根据勾股定理可得正方形的周长.【详解】解:∵正方形的对角线长为2,设正方形的边长为x,∴2x²=(2)²解得:x=2∴正方形的边长为:2故答案为2.本题考查了正方形的性质,解题的关键是明确正方形的对角线和正方形的两条相邻的边构成等腰直角三角形.13、y【解析】

利用一次函数的增减性可求得答案.【详解】∵y=−3x+n,∴y随x的增大而减小,∵点A(1,y1)、B(-2,∴y1故答案为:y1此题考查一次函数图象上点的坐标特征,解题关键在于掌握函数图象的走势.三、解答题(本大题共5个小题,共48分)14、(1)=,=;(2);(3)当或时是等腰三角形.【解析】试题分析:(1)根据AD、BC的值和点Q的速度是1cm/s,点P的速度是2cm/s,直接用t表示出QD、CP的值;(2)四边形是平行四边形,则需,可得方程8-t=10-2t,再解方程即可;(3)分两种情况讨论:①,②,根据这两种情况分别求出t值即可.试题解析:解:(1)=,=;(2)若四边形是平行四边形,则需∴解得(3)①若,如图1,过作于则,∵∴解得②若,如图2,过作于则,即解得综上所述,当或时是等腰三角形考点:四边形、三角形综合题;几何动点问题.15、(1)见解析;(2)∠BCF=15°【解析】

(1)利用正方形的性质得出AC⊥DB,BC//AD,再利用平行线的判定与性质结合平行四边形的判定方法得出答案;(2)利用正方形的性质结合直角三角形的性质得出∠OFC=30°,即可得出答案.【详解】解:(1)证明:∵ABCD是正方形,∴AC⊥DB,BC∥AD∵CE⊥AC∴∠AOD=∠ACE=90°∴BD∥CE∴BCED是平行四边形(2)如图:连接AF,∵ABCD是正方形,∴BD⊥AC,BD=AC=2OB=2OC,即OB=OC∴∠OCB=45°∵Rt△OCF中,CF=BD=2OC,∴∠OFC=30°∴∠BCF=60°-45°=15°本题考查了正方形的性质以及平行四边形的判定和直角三角形的性质,掌握正方形的性质是解题关键.16、3-2【解析】

先根据二次根式的除法法则和平方差公式计算,然后化简后合并即可.【详解】÷2+()()-=÷2+2-1-2=2+1-2=3-2.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.17、(1),;(2)【解析】

(1)根据题意列出对应的代数式即可.(2)根据题意列出方程,求解即可.【详解】(1)由题意得,第二批衬衫进价为元,购进的数量为件.故答案为:;.(2)第一批利润:(元),第二批利润:(元),,整理得,(舍)增长率为本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.18、见解析【解析】根据分段函数图像写出分段函数.试题分析:(1)当时甲的函数图像过点(0,0)和(3,300),此时函数为:,当x=3时甲到达B地,当时过点(3,300)和点,设此时函数为,则可得到方程组:,,解得∴时函数为:,当,y=0.(2)由图知乙的函数图像过点(0,0),设它的函数图像为:y="mx,"∵当它们行驶到与各自出发地的距离相等时,用了小时,∴,解得:m=40,∴乙车离出发地的距离(千米)与行驶时间(小时)之间的函数关系式为:y=40x.(3)当它们在行驶的过程中,甲乙相遇两次即甲从A向B行驶的过程中相遇一次()和甲从B返回A的过程中相遇一次(),∴当时,有;当,有,∴它们在行驶的过程中相遇的时间为:.考点:一次函数的应用.一、填空题(本大题共5个小题,每小题4分,共20分)19、6【解析】

通过证明△AEG∽△DGH,可得=,可设AE=2a,GD=3a,可求GE的长,由AB=AD,列出方程可求a的值,由勾股定理可求BH的长.【详解】解:∵将正方形ABCD沿直线EF翻折,使点B刚好落在AD边上的点G处,∴AB=AD=BC=CD,EG=BE,∠ABC=∠EGH=90°∵∠AGE+∠DGH=90°,∠AGE+∠AEG=90°∴∠AEG=∠DGH,且∠A=∠D=90°∴△AEG∽△DGH∴=∴设AE=2a,GD=3a,∴GE==∵AB=AD∴2a+=4+3a∴a=∴AB=AD=BC=CD=12,∴CH=CD﹣DH=12﹣6=6∴BH==6故答案为:6.本题考查了翻折变换,正方形的性质,相似三角形的判定和性质,勾股定理,利用参数列出方程是本题的关键.20、【解析】

直接利用二次根式乘法运算法则化简得出答案.【详解】=.故答案为.此题主要考查了二次根式的乘法运算,正确掌握二次根式乘法运算法则是解题关键.21、0.1.【解析】

解:方差是用来衡量一组数据波动大小的量,每个数都加了3所以波动不会变,方差仍为0.1.故答案为:0.1.22、北偏西25°方向距离为300m【解析】

根据题意作出图形,即可得到大刚家相对于小亮家的位置.【详解】如图,根据题意得∠ACD=35°,∠ABE=85°,AC=AB=300m由图可知∠CBE=∠BCD,∵AB=AC,∴∠ABC=∠ACB,即∠ABE-∠CBE=∠ACD+∠BCD,∴85°-∠CBE=35°+∠CBE,∴∠CBE=25°,∴∠ABC=∠ACB=60°,∴△ABC为等边三角形,则BC=300m,∴大刚家相对于小亮家的位置是北偏西25°方向距离为300m故填:北偏西25°方向距离为300m.此题主要考查方位角的判断,解题的关键是根据题意作出图形进行求解.23、1<EF<6【解析】

∵在△ABC中,AB=5,BC=7,∴7-5<AC<7+5,即2<AC<12.又∵EF是△ABC的中位线,∴EF=AC∴1<EF<6.二、解答题(本大题共3个小题,共30分)24、(1)见解析;(2)见解析;(3)①∠BAC=135°;②∠BAC=135°且AC=【解析】

(1)根据全等三角形的判定定理SAS证得△BDE≌△BAC;(2)由△BDE≌△BAC,可得全等三角形的对应边DE=AG.然后利用正方形对角线的性质、周角的定义推知∠EDA+∠DAG=180°,易证ED∥GA;最后由“一组对边平行且相等”的判定定理证得结论;(3)①根据“矩形的内角都是直角”易证∠DAG=90°.然后由周角的定义求得∠BAC=135°;②由“正方形的内角都是直角,四条边都相等”易证∠DAG=90°,且AG=AD.由正方形ABDI和正方形ACHG的性质证得:ACAB.【详解】(1)∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°,∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,∵,∴△BDE≌△BAC(SAS);(2)∵△BDE≌△BAC,∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC,∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°,∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(3)①当四边形ADEG是矩形时,∠DAG=90°.则∠BAC=360°﹣∠BAD﹣∠DAG﹣∠GAC=360°﹣45°﹣90°﹣90°=135°,即当∠BAC=135°时,平行四边形ADEG是矩形;②当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.由①知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,∴ADAB.又∵四边形ACHG是正方形,∴AC=AG,∴ACAB,∴当∠BAC=135°且ACAB时,四边形ADEG是正方形.本题综合考查了正方形的判定与性质,全等三角形的判定与性质,平行四边形的判定与性质等知识点.解题时,注意利用隐含在题干中的已知条件:周角是360°.25、(1)见解析;(2)若AB=AC,则四边形AFBD是矩形.理由见解析【解析】

(1)先说明∠AFE=∠DCE,再证明△AEF和△DEC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论