浙江省湖州市第四中学2024-2025学年数学九年级第一学期开学预测试题【含答案】_第1页
浙江省湖州市第四中学2024-2025学年数学九年级第一学期开学预测试题【含答案】_第2页
浙江省湖州市第四中学2024-2025学年数学九年级第一学期开学预测试题【含答案】_第3页
浙江省湖州市第四中学2024-2025学年数学九年级第一学期开学预测试题【含答案】_第4页
浙江省湖州市第四中学2024-2025学年数学九年级第一学期开学预测试题【含答案】_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共9页浙江省湖州市第四中学2024-2025学年数学九年级第一学期开学预测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)设、是方程的两根,则+=()A.-3 B.-1 C.1 D.32、(4分)将方程x2+4x+1=0配方后,原方程变形为()A.(x+2)2=3 B.(x+4)2=3 C.(x+2)2=﹣3 D.(x+2)2=﹣53、(4分)如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是边AB、AD的中点,连接EF,若,,则菱形ABCD的面积为A.24 B.20 C.5 D.484、(4分)下列二次根式化简后,能与合并的是()A. B. C. D.5、(4分)直角三角形纸片的两直角边长分别为6,8,现将△ABC如图折叠,使点A与点B重合,则折痕DE的长是()A. B. C. D.6、(4分)实数x取任何值,下列代数式都有意义的是()A. B. C. D.7、(4分)下列各组数中,能构成直角三角形三边长的是()A.4、5、6 B.5,12,23 C.6,8,11 D.1,1,8、(4分)小亮在同一直角坐标系内作出了和的图象,方程组的解是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)计算:+×=________.10、(4分)已知一个凸多边形的内角和是它的外角和的3倍,那么这个凸多边形的边数等于_________.11、(4分)如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_____cm.12、(4分)不等式9﹣3x>0的非负整数解的和是_____.13、(4分)我区有15所中学,其中九年级学生共有3000名.为了了解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进行排序.①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.则正确的排序为________(填序号)三、解答题(本大题共5个小题,共48分)14、(12分)如图,在△ABC中,∠ACB=90°,∠CAB=30°,AC=4.5cm.M是边AC上的一个动点,连接MB,过点M作MB的垂线交AB于点N.设AM=xcm,AN=ycm.(当点M与点A或点C重合时,y的值为0)探究函数y随自变量x的变化而变化的规律.(1)通过取点、画图、测量,得到了x与y的几组对应值,如下表:x/cm00.511.522.533.544.5y/cm00.40.81.21.61.71.61.20(要求:补全表格,相关数值保留一位小数)(2)建立平面直角坐标系xOy,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当AN=AM时,AM的长度约为cm(结果保留一位小数).15、(8分)如图1,△ABC中,∠ABC=90°,AB=1,BC=2,将线段BC绕点C顺时旋转90°得到线段CD,连接AD.(1)说明△ACD的形状,并求出△ACD的面积;(2)把等腰直角三角板按如图2的方式摆放,顶点E在CB边上,顶点F在DC的延长线上,直角顶点与点C重合.从A,B两题中任选一题作答:A.如图3,连接DE,BF,①猜想并证明DE与BF之间的关系;②将三角板绕点C逆时针旋转α(0°<α<90°),直接写出DE与BF之间的关系.B.将图2中的三角板绕点C逆时针旋转α(0<α<360°),如图4所示,连接BE,DF,连接点C与BE的中点M,①猜想并证明CM与DF之间的关系;②当CE=1,CM=72时,请直接写出α的值16、(8分)为了积极响应国家新农村建设,某市镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路的一侧点处有一村庄,村庄到公路的距离为800米,假使宣讲车周围1000米以内能听到广播宣传,宣讲车在公路上沿方向行驶时:(1)请问村庄能否听到宣传,并说明理由;(2)如果能听到,已知宣讲车的速度是每分钟300米,那么村庄总共能听到多长时间的宣传?17、(10分)△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于x轴对称的△A1B1C1;(1)将△ABC向右平移4个单位长度,画出平移后的△A1B1C1.18、(10分)在“爱满扬州”慈善一日捐活动中,学校团总支为了了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成统计图.(1)这50名同学捐款的众数为元,中位数为元;(2)求这50名同学捐款的平均数;(3)该校共有600名学生参与捐款,请估计该校学生的捐款总数.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)在矩形ABCD中,AB=6cm,BC=8cm,则点A到对角线BD的距离为_____.20、(4分)甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1000米,甲超出乙150米时,甲停下来等候乙,甲、乙会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息,在跑步的整个过程中,甲、乙两人的距离y(米)与乙出发的时间x(秒)之间的关系如图所示,则甲到终点时,乙距离终点还有_____米.21、(4分)如图,为的中位线,,则________________.22、(4分)写出在抛物线上的一个点________.23、(4分)如图,在中,,为的中线,过点作于点,过点作的平行线,交的延长线于点,在的延长线上截取,连接、.若,,则________.二、解答题(本大题共3个小题,共30分)24、(8分)计算:(1)(-)2-+(2)-×.25、(10分)已知关于x的一元二次方程有两个不相等的实数根.求k的取值范围;若k为负整数,求此时方程的根.26、(12分)如图,在中,,是的中点,是的中点,过点作交的延长线于点,连接.(1)写出四边形的形状,并证明:(2)若四边形的面积为12,,求.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】

根据一元二次方程根与系数的关系解答即可.【详解】解:∵、是方程的两根,∴+=-1.故选:B本题考查了一元二次方程根与系数的关系,若是一元二次方程的两个根,则.2、A【解析】

配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】∵x2+4x+1=0,∴x2+4x=−1,∴x2+4x+4=−1+4,∴(x+2)2=3.故选:A.此题考查解一元二次方程-配方法,掌握运算法则是解题关键3、A【解析】

根据EF是的中位线,根据三角形中位线定理求的BD的长,然后根据菱形的面积公式求解.【详解】解:、F分别是AB,AD边上的中点,即EF是的中位线,,则.故选A.本题考查了三角形的中位线定理和菱形的面积公式,理解中位线定理求的BD的长是关键.4、C【解析】

先把各根式化简,与的被开方数相同的,可以合并.【详解】=2,,,因为、、与的被开方数不相同,不能合并;化简后C的被开方数与相同,可以合并.故选C.本题考查了同类二次根式的概念.注意同类二次根式是在最简二次根式的基础上定义的.5、D【解析】

先通过勾股数得到,再根据折叠的性质得到,,,设,则,,在中利用勾股定理可计算出x,然后在中利用勾股定理即可计算得到DE的长.【详解】直角三角形纸片的两直角边长分别为6,8,,又折叠,,,,设,则,,在中,,即,解得,在中,故选D.本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等也考查了勾股定理.6、C【解析】

根据二次根式有意义,被开方数大于等于0对各选项举例判断即可.【详解】解:A、由6+2x≥0得,x≥-3,所以,x<-3时二次根式无意义,故本选项错误;B、由2-x≥0得,x≤2,所以,x>2时二次根式无意义,故本选项错误;C、∵(x-1)2≥0,∴实数x取任何值二次根式都有意义,故本选项正确;D、由x+1≥0得,x≥-1,所以,x<-1二次根式无意义,又x=0时分母等于0,无意义,故本选项错误;故选:C.本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.7、D【解析】试题分析:A、42+52≠62,不能构成直角三角形,故不符合题意;B、52+122≠232,不能构成直角三角形,故不符合题意;C、62+82≠112,不能构成直角三角形,故不符合题意;D、12+12=()2,能构成直角三角形,故符合题意.故选D.考点:勾股定理的逆定理.8、B【解析】

由数形结合可得,直线和的交点即为方程组的解,可得答案.【详解】解:由题意得:直线和的交点即为方程组的解,可得图像上两直线的交点为(-2,2),故方程组的解为,故选B.本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.二、填空题(本大题共5个小题,每小题4分,共20分)9、3【解析】

先根据二次根式的乘法法则运算,然后化简后合并即可.【详解】解:原式=2+=3.故答案为:3.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.10、1【解析】

根据多边形的内角和定理,多边形的内角和等于(n-2)•110°,外角和等于360°,然后列方程求解即可.【详解】解:设这个凸多边形的边数是n,根据题意得

(n-2)•110°=3×360°,

解得n=1.

故这个凸多边形的边数是1.

故答案为:1.本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键.11、1【解析】

要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:将长方体展开,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==1cm.故答案为1.考点:平面展开-最短路径问题.12、1【解析】

先根据不等式的性质求出不等式的解集,再找出不等式的非负整数解相加即可.【详解】所以不等式的非负整数解为0,1,2则所求的和为故答案为:1.本题考查了求一元一次不等式的整数解,掌握不等式的解法是解题关键.13、②①④⑤③【解析】根据统计调查的一般过程:①问卷调查法……收集数据,②列统计表……整理数据,③画统计图……描述数据,所以解决上述问题要经历的及格重要步骤进行排序为:②设计调查问卷,①收集数据,④整理数据,⑤分析数据,③用样本估计总体,故答案为:②①④⑤③.三、解答题(本大题共5个小题,共48分)14、(1)1.1;(2)详见解析;(3)3.1.【解析】

(1)如图,作辅助线:过N作NP⊥AC于P,证明△NPM∽△MCB,列比例式可得结论;

(2)描点画图即可;

(3)同理证明△NPM∽△MCB,列比例式,解方程可得结论.【详解】解:(1)如图,过N作NP⊥AC于P,

Rt△ACB中,∠CAB=30°,AC=1.5cm.

∴BC=

当x=2时,即AM=2,

∴MC=2.5,

∵∠NMB=90°,

易得△NPM∽△MCB,

∴=,

设NP=5a,PM=9a,则AP=15a,AN=10a,

∵AM=2,

∴15a+9a=2,

a=,

∴y=AN=10×1.73×≈1.1;x/cm00.511.522.533.511.5y/cm00.10.81.21.11.61.71.61.20故答案为1.1;(2)如图所示:(3)设PN=a,则AN=2a,AP=a,∵AN=AM,∴AM=1a,

如图,由(1)知:△NPM∽△MCB,

∴,即,

解得:a≈0.81,∴AM=1a=1×0.81=3.36≈3.1(cm).

故答案为(1)1.1;(2)详见解析;(3)3.1.本题是三角形与函数图象的综合题,主要考查了含30度角的直角三角形的性质,相似三角形的判定和性质,函数图象的画法,直角三角形的性质,勾股定理,并与方程相结合,计算量比较大.15、(1)△ACD是等腰三角形,SΔACD=2;(2)A①DE=BF,DE⊥BF,见解析;②DE=BF,DE⊥【解析】

(1)过点A作AE⊥CD于点E,则∠AEC=∠AED=90°.可证四边形ABCE是矩形,从而AE=BC=2,AB=CE=1,可得AE垂直平分CD,从而△ACD是等腰三角形;再根据三角形的面积公式计算即可;(2)A.①根据“SAS”可证△BCF≌△DCE,从而DE=BF,∠CBF=∠CDE,延长DE交BF于点H,由∠DEC+∠CDE=90°,可证∠BEH+∠CBF=90°,所以∠BHE=90°,即DE⊥BF;②证明方法同①;B.①延长MC交DF于点N,延长CM至点G,使CM=MG,连接EG,根据“SAS”证明△MEG≌△MBC,从而BC=GE,BC∥GE,然后再证明△ECG≌△CFD,可得CG=DF,∠ECG=∠CFD,进而可证明结论成立;②作FH⊥DC,交DC的延长线与点H,设FH=x,CH=y.由勾股定理列方程组求出x与y的值,根据含30°角的直角三角形的性质可知∠FCH=30°,进而可求α=60°或300°.【详解】△ACD是等腰三角形,理由如下:过点A作AE⊥CD于点E,则∠AEC=∠AED=90°.又∵∠ABC=90°,∠BCE=90°,∴四边形ABCE是矩形,∴AE=BC=2,AB=CE=1,∴CD=1,∴AE垂直平分CD,∴AC=AD,∴△ACD是等腰三角形,∴S(2)A:①DE=BF,DE⊥BF.理由如下:由旋转可知,BC=CD=2,∠BCD=90°,∵等腰直角△CEF顶点E在CB边上,顶点F在DC的延长线上,∴CE=CF,∠BCF=∠DCE=90°.在△BCF和△DCE中,BC=DC,∠BCF=∠DCE,CF=CE,∴△BCF≌△DCE(SAS),∴DE=BF,∠CBF=∠CDE,延长DE交BF于点H,∵∠DEC+∠CDE=90°,∠DEC=∠BEH,∴∠BEH+∠CBF=90°,∴∠BHE=90°,∴DE⊥BF;②DE=BF,DE⊥BF.证明方法同①;B:①CM=12DF,CM⊥DF.延长MC交DF于点N,延长CM至点G,使CM=MG,连接EG,∵M是BE的中点,∴ME=MB.在△MEG和△MBC中,ME=MB,∠EMG=∠BMC,MG=MC,∴△MEG≌△MBC(SAS),∴CM=MG=12CG,BC=GE,BC∥GE∵BC=CD,∴EG=CD.由旋转得∠BCE=α,∵BC∥GE,∴∠CEG=180°-α,∵∠DCF=360°-∠ECF-∠BCE-∠BCD=180°-α,∴∠CEG=∠DCF,在△ECG和△CFD中,CE=CF,∠CEG=∠DCF,∠CEG=∠DCF,∴△ECG≌△CFD(SAS),∴CG=DF,∠ECG=∠CFD,∵MG=MC,∴MC=12DF∵∠ECF=90°,∴∠ECG+∠FCN=∠FCD+∠FCN=90°,∴∠CNF=90°,∴DE⊥BF;②作FH⊥DC,交DC的延长线与点H,设FH=x,CH=y.∵CM=72,∴DF=CG=7∴x2+y∴FH=12∴∠FCH=30°,∴∠FCD=120°,∴∠BCE=60°,∴α=60°或300°.本题考查了旋转的性质,矩形的判定与性质,线段垂直平分线的判定与性质,全等三角形的判定与性质,勾股定理,含30°角的直角三角形的性质,以及分类讨论的数学思想,正确作出辅助线是解答本题的关键.16、(1)村庄能听到宣传.理由见解析;(2)村庄总共能听到4分钟的宣传.【解析】

(1)根据题意村庄A到公路MN的距离为800米<1000米,即可解答(2)假设当宣讲车行驶到P点开始影响村庄,行驶Q点结束对村庄的影响【详解】解:(1)村庄能听到宣传.理由:因为村庄A到公路MN的距离为800米<1000米,所以村庄能听到宣传(2)如图,假设当宣讲车行驶到P点开始影响村庄,行驶Q点结束对村庄的影响,利用勾股定理进行计算即可解答则AP=AQ=1000米,AB=800米.∴BP=BQ==600米.∴PQ=1200米.、∴影响村庄的时间为:1200÷300=4(分钟).∴村庄总共能听到4分钟的宣传.此题考查解直角三角形,利用勾股定理进行计算是解题关键17、(1)见解析;(1)见解析.【解析】

(1)作出A、B、C三点关于x轴的对称点,把这三点连接起来即得到△A1B1C1;(1)作出A、B、C三点向右平移4个单位长度后的三点,再把这三点连接起来就得到了平移后的△A1B1C1【详解】解:(1)如图所示:(1)如图所示:点睛:本题考查对称和平移,对图象对称和平移的概念要清楚,并会画出图形是解决本题的关键18、(1)15,15;(2)13(元);(3)7800(元).【解析】试题分析:(1)根据众数的定义即出现次数最多的数据进而得出即可,再利用中位数的定义得出即可;(2)利用条形统计图得出各组频数,再根据加权平均数的公式计算即可;(3)利用样本估计总体的思想,用总数乘以捐款平均数即可得到捐款总数.解:(1)数据15元出现了20次,出现次数最多,所以众数是15元;数据总数为50,所以中位数是第25、26位数的平均数,即(15+15)÷2=15(元).故答案为15,15;(2)50名同学捐款的平均数=(5×8+10×14+15×20+20×6+25×2)÷50=13(元);(3)估计这个中学的捐款总数=600×13=7800(元).考点:条形统计图;用样本估计总体;加权平均数;中位数;众数.一、填空题(本大题共5个小题,每小题4分,共20分)19、4.8cm【解析】

作AE⊥BD于E,由矩形的性质和勾股定理求出BD,由△ABD的面积的计算方法求出AE的长即可.【详解】如图所示:作AE⊥BD于E,

∵四边形ABCD是矩形,

∴∠BAD=90°,AD=BC=8cm,

∴BD==10cm,

∵△ABD的面积=BD•AE=AB•AD,

∴AE===4.8cm,

即点A到对角线BD的距离为4.8cm,

故答案为:4.8cm.考查了矩形的性质、勾股定理、三角形面积的计算;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.20、50【解析】

乙从开始一直到终点,行1000米用时200秒,因此乙的速度为1000÷200=5米/秒,甲停下来,乙又走150÷5=30秒才与甲第一次会和,第一次会和前甲、乙共同行使150-30=120秒,从起点到第一次会和点的距离为5×150=750米,因此甲的速度为750÷120=6.25米/秒,甲行完全程的时间为1000÷6.25=160秒,甲到终点时乙行驶时间为160+30=190秒,因此乙距终点还剩200-190=10秒的路程,即10×5=50米.【详解】乙的速度为:1000÷200=5米/秒,从起点到第一次会和点距离为5×150=750米,甲停下来到乙到会和点时间150÷5=30秒,之前行驶时间150﹣30=120秒,甲的速度为750÷120=6.25米/秒,甲到终点时乙行驶时间1000÷6.25+30=190秒,还剩10秒路程,即10×5=50米,故答案为50米.考查函数图象的意义,将行程类实际问题和图象联系起来,理清速度、时间、路程之间的关系是解决问题关键.21、50°【解析】

根据三角形中位线定理可得EF∥AB,进而可求出∠EFC的度数.【详解】∵EF是中位线,∴DE∥AB,∴∠EFC=∠B=50°,故答案为:50°.本题考查了三角形中位线定理,解题的关键是熟记三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.22、(0,﹣4)(答案不唯一)【解析】

把(0,﹣4)点的横坐标代入函数式,比较纵坐标是否相符,即可解答.【详解】将(0,﹣4)代入,得到,故(0,﹣4)在抛物线上,故答案为:(0,﹣4).此题考查二次函数图象上点的坐标特征,解题关键在于把点代入解析式.23、5【解析】

首先可判断

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论