江西省宜春市宜春中学2025届高二上数学期末质量跟踪监视模拟试题含解析_第1页
江西省宜春市宜春中学2025届高二上数学期末质量跟踪监视模拟试题含解析_第2页
江西省宜春市宜春中学2025届高二上数学期末质量跟踪监视模拟试题含解析_第3页
江西省宜春市宜春中学2025届高二上数学期末质量跟踪监视模拟试题含解析_第4页
江西省宜春市宜春中学2025届高二上数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省宜春市宜春中学2025届高二上数学期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.给出如下四个命题正确的是()①方程表示的图形是圆;②椭圆的离心率;③抛物线的准线方程是;④双曲线的渐近线方程是A.③ B.①③C.①④ D.②③④2.已知向量,则下列结论正确的是()A.B.C.D.3.抛物线准线方程为()A. B.C. D.4.“”是“方程为双曲线方程”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.设函数在R上可导,则()A. B.C. D.以上都不对6.已知圆和圆恰有三条公共切线,则的最小值为()A.6 B.36C.10 D.7.数学家欧拉在1765年发现,任意三角形的外心、重心、垂心位于同一条直线上,这条直线称为欧拉线.已知的顶点,,若其欧拉线的方程为,则顶点的坐标为()A. B.C. D.8.双曲线的光学性质为:如图①,从双曲线右焦点发出的光线经双曲线镜面反射,反射光线的反向延长线经过左焦点.我国首先研制成功的“双曲线新闻灯”,就是利用了双曲线的这个光学性质.某“双曲线新闻灯”的轴截面是双曲线的一部分,如图②,其方程为,为其左、右焦点,若从右焦点发出的光线经双曲线上的点和点反射后,满足,,则该双曲线的离心率为()A. B.C. D.9.已知直线与x轴,y轴分别交于A,B两点,且直线l与圆相切,则的面积的最小值为()A.1 B.2C.3 D.410.在下列函数中,最小值为2的是()A. B.C. D.11.如图,正四棱柱是由四个棱长为1的小正方体组成的,是它的一条侧棱,是它的上底面上其余的八个点,则集合的元素个数()A.1 B.2C.4 D.812.甲烷是一种有机化合物,分子式为,其在自然界中分布很广,是天然气、沼气的主要成分.如图所示的为甲烷的分子结构模型,已知任意两个氢原子之间的距离(H-H键长)相等,碳原子到四个氢原子的距离(C-H键长)均相等,任意两个H-C-H键之间的夹角为(键角)均相等,且它的余弦值为,即,若,则以这四个氢原子为顶点的四面体的体积为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.与直线和直线的距离相等的直线方程为______14.曲线的一条切线的斜率为,该切线的方程为________.15.不等式的解集是________16.椭圆的长轴长为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,第1个图形需要4根火柴,第2个图形需要7根火柴,,设第n个图形需要根火柴(1)试写出,并求;(2)记前n个图形所需的火柴总根数为,设,求数列的前n项和18.(12分)已知在△中,角A,B,C的对边分别是a,b,c,且.(1)求角C的大小;(2)若,求△的面积S的最大值.19.(12分)如图1,在△MBC中,,A,D分别为棱BM,MC的中点,将△MAD沿AD折起到△PAD的位置,使,如图2,连结PB,PC,BD(1)求证:平面PAD⊥平面ABCD;(2)若E为PC中点,求直线DE与平面PBD所成角的正弦值20.(12分)设椭圆的左、右焦点分别为,.点满足.(1)求椭圆的离心率;(2)设直线与椭圆相交于,两点,若直线与圆相交于,两点,且,求椭圆的方程.21.(12分)已知内角A,B,C的对边分别为a,b,c,且B,A,C成等差数列.(1)求A的大小;(2)若,且的面积为,求的周长.22.(10分)求下列函数的导数:(1);(2).

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】对选项①,根据圆一般方程求解即可判断①错误,对选项②,求出椭圆离心率即可判断②错误,对③,求出抛物线渐近线即可判断③正确,对④,求出双曲线渐近线方程即可判断④错误。【详解】对于①选项,,,故①错误;对于②选项,由题知,所以,所以离心率,故②错误;对于③选项,抛物线化为标准形式得抛物线,故准线方程是,故③正确;对于④选项,双曲线化为标准形式得,所以,焦点在轴上,故渐近线方程是,故④错误.故选:A2、D【解析】由题可知:,,,故选;D3、D【解析】由抛物线的准线方程即可求解【详解】由抛物线方程得:.所以,抛物线的准线方程为故选D【点睛】本题主要考查了抛物线的准线方程,属于基础题4、C【解析】先求出方程表示双曲线时满足的条件,然后根据“小推大”的原则进行判断即可.【详解】因方程为双曲线方程,所以,所以“”是“方程为双曲线方程”的充要条件.故选:C.5、B【解析】根据极限的定义计算【详解】由题意故选:B6、B【解析】由公切线条数得两圆外切,由此可得的关系,从而点在以原点为圆心,4为半径的圆上,记,由求得的最小值,平方后即得结论【详解】圆标准方程为,,半径为,圆标准方程为,,半径为,两圆有三条公切线,则两圆外切,所以,即,点在以原点为圆心,4为半径的圆上,记,,所以,所以的最小值为故选:B7、A【解析】设,计算出重心坐标后代入欧拉方程,再求出外心坐标,根据外心的性质列出关于的方程,最后联立解方程即可.【详解】设,由重心坐标公式得,三角形的重心为,,代入欧拉线方程得:,整理得:①的中点为,,的中垂线方程为,即联立,解得的外心为则,整理得:②联立①②得:,或,当,时,重合,舍去顶点的坐标是故选:A【点睛】关键点睛:解决本题的关键一是求出外心,二是根据外心的性质列方程.8、C【解析】连接,已知条件为,,设,由双曲线定义表示出,用已知正切值求出,再由双曲线定义得,这样可由勾股定理求出(用表示),然后在中,应用勾股定理得出的关系,求得离心率【详解】易知共线,共线,如图,设,,则,由得,,又,所以,,所以,所以,由得,因为,故解得,则,在中,,即,所以故选:C9、A【解析】由直线与圆相切可得,再利用基本不等式即求.【详解】由已知可得,,因为直线与圆相切,所以,即,因为,当且仅当时取等号,所以,,所以面积的最小值为1.故选:A10、C【解析】结合基本不等式的知识对选项逐一分析,由此确定正确选项.【详解】对于A选项,时,为负数,A错误.对于B选项,,,,但不存在使成立,所以B错误.对于C选项,,当且仅当时等号成立,C正确.对于D选项,,,,但不存在使成立,所以D错误.故选:C11、A【解析】用空间直角坐标系看正四棱柱,根据向量数量积进行计算即可.【详解】建立空间直角坐标系,为原点,正四棱柱的三个边的方向分别为轴、轴和看轴,如右图示,,设,则AB所以集合,元素个数为1.故选:A.12、A【解析】利用余弦定理求得,计算出正四面体的高,从而计算出正四面体的体积.【详解】设,则由余弦定理知:,解得,故该正四面体的棱长均为由正弦定理可知:该正四面体底面外接圆的半径,高故该正四面体的体积为故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设直线方程为,根据两平行直线之间距离公式即可求解.【详解】设该直线为:,则由两平行直线之间距离公式得:,故该直线为:;故答案为:.14、【解析】使用导数运算公式求得切点处的导数值,并根据导数的几何意义等于切线斜率求得切点的横坐标,进而得到切点坐标,然后利用点斜式求出切线方程即可.【详解】的导数为,设切点为,可得,解得,即有切点,则切线的方程为,即.故答案为:.【点睛】本题考查导数的加法运算,导数的几何意义,和求切线方程,难度不大,关键是正确的使用导数运算公式求得切点处的导数值,15、【解析】先将分式不等式化为一元二次不等式,再根据一元二次不等式的解法解不等式即可【详解】∵,∴(x﹣2)(x+4)<0,∴-4<x<2,即不等式的解集为{x|-4<x<2}故答案为.【点睛】本题主要考查分式不等式及一元二次不等式的解法,比较基础16、4【解析】把椭圆方程化成标准形式直接计算作答.【详解】椭圆方程化为:,令椭圆长半轴长为a,则,解得,所以椭圆的长轴长为4.故答案为:4三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)根据题设找到规律写出,由等差数列的定义求.(2)由等差数列前n项和求,再利用裂项相消法求.【小问1详解】由题意知:,,,,可得每增加一个正方形,火柴增加3根,即,所以数列是以4为首项,以3为公差的等差数列,则.【小问2详解】由题意可知,,所以,则,所以,,即18、(1);(2).【解析】(1)由正弦定理、和角正弦公式及三角形内角的性质可得,进而可得C的大小;(2)由余弦定理可得,根据基本不等式可得,由三角形面积公式求面积的最大值,注意等号成立条件.【小问1详解】由正弦定理知:,∴,又,∴,则,故.【小问2详解】由,又,则,∴,当且仅当时等号成立,∴△的面积S的最大值为.19、(1)证明见解析;(2).【解析】(1)推导出,,利用线面垂直的判定定理可得平面,再利用面面垂直的判定定理即可证明;(2)以A为坐标原点,建立如图空间直角坐标系,利用向量法即可求出直线DE与平面所成角的正弦值.【小问1详解】由题意知,因为点A、D分别为MB、MC中点,所以,又,所以,所以.因为,所以,又,所以平面,又平面,所以平面平面;【小问2详解】因为,,,所以两两垂直,以A为坐标原点,建立如图空间直角坐标系,,则,设平面的一个法向量为,则,令,得,所以,设直线DE与平面所成角为,则,所以直线DE与平面所成角的正弦值为.20、(1);(2)【解析】(1)由及两点间距离公式可建立等式,消去b,即可求解出,主要两个根的的要舍去;(2)联立直线和椭圆的方程,利用弦长公式求得,再利用几何关系求得,代入,可解得c,从而得到椭圆的方程.【详解】(1)设,,因为,所以,整理得,得(舍),或,所以;(2)由(1)知,,可得椭圆方程为,直线的方程为,A,B两点的坐标满足方程组为,消去y并整理,得,解得:,,得方程组的解和,不妨设:,,所以,于是,圆心到直线的距离为,因为,所以,整理得:,得(舍),或,所以椭圆方程为:.【点睛】关键点点睛:本题考查求椭圆的离心率解题关键是找到关于a,b,c的等量关系,第二问的关键是联立直线与椭圆方程求出交点坐标,利用距离公式建立等量关系,求出c是求出椭圆方程的关键.21、(1)(2)【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论