2025届天津市宝坻区普通高中高二数学第一学期期末学业水平测试模拟试题含解析_第1页
2025届天津市宝坻区普通高中高二数学第一学期期末学业水平测试模拟试题含解析_第2页
2025届天津市宝坻区普通高中高二数学第一学期期末学业水平测试模拟试题含解析_第3页
2025届天津市宝坻区普通高中高二数学第一学期期末学业水平测试模拟试题含解析_第4页
2025届天津市宝坻区普通高中高二数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届天津市宝坻区普通高中高二数学第一学期期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是定义在上的函数,且对任意都有,若函数的图象关于点对称,且,则()A. B.C. D.2.若函数在定义域上单调递增,则实数的取值范围为()A. B.C. D.3.经过点且与双曲线有共同渐近线的双曲线方程为()A. B.C. D.4.今天是星期四,经过天后是星期()A.三 B.四C.五 D.六5.顶点在原点,关于轴对称,并且经过点的抛物线方程为()A. B.C. D.6.下列数列是递增数列的是()A. B.C. D.7.已知,,若,则实数的值为()A. B.C. D.8.在四面体OABC中,点M在线段OA上,且,N为BC中点,已知,,,则等于()A. B.C. D.9.已知数列是等比数列,,数列是等差数列,,则的值是()A. B.C. D.10.已知集合,,若,则=()A.{1,2,3} B.{1,2,3,4}C.{0,1,2} D.{0,1,2,3}11.双曲线的渐近线的斜率是()A.1 B.C. D.12.已知双曲线,过左焦点且与轴垂直的直线与双曲线交于、两点,若弦的长恰等于实铀的长,则双曲线的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知球的半径为4,圆与圆为该球的两个小圆,为圆与圆的公共弦,,若,则两圆圆心的距离___________14.已知函数,则f(e)=__.15.已知等比数列的前项和为,若,,则______.16.如图,四边形和均为正方形,它们所在的平面互相垂直,动点在线段上,、分别为、的中点.设异面直线与所成的角为,则的最大值为____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线C:x2=2py的焦点为F,点N(t,1)在抛物线C上,且|NF|=.(1)求抛物线C的方程;(2)过点M(0,1)的直线l交抛物线C于不同的两点A,B,设O为坐标原点,直线OA,OB的斜率分别为k1,k2,求证:k1k2为定值.18.(12分)已知抛物线C:的焦点为F,为抛物线C上一点,且(1)求抛物线C的方程:(2)若以点为圆心,为半径的圆与C的准线交于A,B两点,过A,B分别作准线的垂线交抛物线C于D,E两点,若,证明直线DE过定点19.(12分)已知圆,点.(1)若,半径为的圆过点,且与圆相外切,求圆的方程;(2)若过点的两条直线被圆截得的弦长均为,且与轴分别交于点、,,求.20.(12分)求满足下列条件的双曲线的标准方程(1)焦点在x轴上,实轴长为4,实半轴长是虚半轴长的2倍;(2)焦点在y轴上,渐近线方程为,焦距长为21.(12分)在平面直角坐标系中,已知圆,点P在圆上,过点P作x轴的垂线,垂足为是的中点,当P在圆M上运动时N形成的轨迹为C(1)求C的轨迹方程;(2)若点,试问在x轴上是否存在点M,使得过点M的动直线交C于两点时,恒有?若存在,求出点M的坐标;若不存在,请说明理由22.(10分)已知点A(1,2)在抛物线C∶上,过点A作两条直线分别交抛物线于点D,E,直线AD,AE的斜率分别为kAD,kAE,若直线DE过点P(-1,-2)(1)求抛物线C的方程;(2)求直线AD,AE的斜率之积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】令,代入可得,即得,再由函数的图象关于点对称,判断得函数的图象关于点对称,即,则化简可得,即函数的周期为,从而代入求解.【详解】令,得,即,所以,因为函数的图象关于点对称,所以函数的图象关于点对称,即,所以,即,可得,则,故选:D.第II卷(非选择题2、D【解析】函数在定义域上单调递增等价于在上恒成立,即在上恒成立,然后易得,最后求出范围即可.【详解】函数的定义域为,,在定义域上单调递增等价于在上恒成立,即在上恒成立,即在上恒成立,分离参数得,所以,即.【点睛】方法点睛:已知函数的单调性求参数的取值范围的通解:若在区间上单调递增,则在区间上恒成立;若在区间上单调递减,则在区间上恒成立;然后再利用分离参数求得参数的取值范围即可.3、C【解析】共渐近线的双曲线方程,设,把点代入方程解得参数即可.【详解】设,把点代入方程解得参数,所以化简得方程故选:C.4、C【解析】求出二项式定理的通项公式,得到除以7余数是1,然后利用周期性进行计算即可【详解】解:一个星期的周期是7,则,即除以7余数是1,即今天是星期四,经过天后是星期五,故选:5、C【解析】根据题意,设抛物线的方程为,进而待定系数求解即可.【详解】解:由题,设抛物线的方程为,因为在抛物线上,所以,解得,即所求抛物线方程为故选:C6、C【解析】分别判断的符号,从而可得出答案.【详解】解:对于A,,则,所以数列为递减数列,故A不符合题意;对于B,,则,所以数列为递减数列,故B不符合题意;对于C,,则,所以数列为递增数列,故C符合题意;对于D,,则,所以数列递减数列,故D不符合题意.故选:C.7、A【解析】由,得,从而可得答案.【详解】解:因为,所以,即,解得.故选:A.8、B【解析】根据空间向量基本定理结合已知条件求解【详解】因为N为BC中点,所以,因为M在线段OA上,且,所以,所以,故选:B9、B【解析】根据等差数列和等比数列下标和的性质即可求解.【详解】为等比数列,,,,;为等差数列,,,,,∴.故选:B.10、D【解析】根据题意,解不等式求出集合,由,得,进而求出,从而可求出集合,最后根据并集的运算即可得出答案.【详解】解:由题可知,,而,即,解得:,又由于,得,因为,则,所以,解得:,所以,所以.故选:D.【点睛】本题考查集合的交集的定义和并集运算,属于基础题.11、B【解析】由双曲线的渐近线方程为:,化简即可得到答案.【详解】双曲线的渐近线方程为:,即,渐近线的斜率是.故选:B12、B【解析】求出,进而求出,之间的关系,即可求解结论【详解】解:由题意,直线方程为:,其中,因此,设,,,,解得,得,,弦的长恰等于实轴的长,,,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】欲求两圆圆心的距离,将它放在与球心组成的三角形中,只要求出球心角即可,通过球的性质构成的直角三角形即可解得【详解】∵,球半径为4,∴小圆的半径为,∵小圆中弦长,作垂直于,∴,同理可得,在直角三角形中,∵,,∴,∴,∴故答案为:.14、【解析】由导数得出,再求.【详解】∵,∴,,解得,,,故答案为:.15、【解析】设等比数列的公比为,根据已知条件求出的值,由此可得出的值.【详解】设等比数列的公比为,则,整理可得,,解得,因此,.故答案为:.16、【解析】如图所示,建立空间直角坐标系,设,,,,,由向量法可得,令,,,利用导数研究函数的单调性即可求得的最大值,从而可得答案【详解】解:由题意,根据已知条件,直线AB,AD,AQ两两互相垂直,所以建立如图所示空间直角坐标系不妨设,则,0,,,0,,,1,,设,,,,,,,,,,,令,,则,函数在上单调递减,时,函数取得最大值,的最大值为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)x2=2y;(2)证明见解析【解析】(1)利用抛物线的定义进行求解即可;(2)设直线l的直线方程与抛物线方程联立,根据一元二次方程根与系数关系、斜率公式进行证明即可.【小问1详解】∵点N(t,1)在抛物线C:x2=2py上,且|NF|=,∴|NF|=,解得p=1,∴抛物线C的方程为x2=2y;【小问2详解】依题意,设直线l:y=kx+1,A(x1,y1),B(x2,y2),联立,得x2﹣2kx﹣2=0.则x1x2=﹣2,∴.故k1k2为定值.【点睛】关键点睛:利用抛物线的定义是解题的关键.18、(1);(2)证明见解析.【解析】(1)解方程和即得解;(2)设,,将与圆P的方程联立得到韦达定理,再写出直线的方程即得解.【小问1详解】解:因为抛物线C上一点,且,所以到抛物线C的准线的距离为2则,,则,所以,故抛物线C的方程为【小问2详解】证明:由(1)知,则圆P的方程为设,,将与圆P的方程联立,可得,则,当时,,不妨令,则,此时;当时,直线DE的斜率为,则直线DE的方程为,即,即,令且,得,直线过点;综上,直线DE过定点19、(1)或(2)【解析】(1)设圆心,根据已知条件可得出关于、的方程组,解出、的值,即可得出圆的方程;(2)分析可知直线、的斜率存在,设过点且斜率存在的直线的方程为,即,利用勾股定理可得出,可知直线、的斜率、是关于的二次方程的两根,求出、的坐标,结合韦达定理可求得的值.【小问1详解】解:设圆心,圆的圆心为,由题意可得,解得或,因此,圆的方程为或.【小问2详解】解:若过点的直线斜率不存在,则该直线的方程为,圆心到直线的距离为,不合乎题意.设过点且斜率存在的直线的方程为,即,由题意可得,整理可得,设直线、的斜率分别为、,则、为关于的二次方程的两根,,由韦达定理可得,,在直线的方程中,令,可得,即点在直线的方程中,令,可得,即点,所以,,解得.20、(1)(2)【解析】(1)(2)直接由条件解出即可得到双曲线方程.【小问1详解】由题意有,解得:,则双曲线的标准方程为:【小问2详解】由题意有,解得:,则双曲线的标准方程为:21、(1);(2)不存在,理由见解析.【解析】(1)设,根据中点坐标公式用N的坐标表示P的坐标,将P的坐标代入圆M的方程化简即可得N的轨迹方程;(2)假设存在,设M为(m,0),设直线l斜率为k,表示其方程,l方程和椭圆方程联立,根据韦达定理得根与系数关系,由,得,代入根与系数的关系求k与m关系即可判断.【小问1详解】设,因为N为的中点,,又P点在圆上,,即C轨迹方程为;【小问2详解】不存在满足条件的点M,理由如下:假设存在满足条件的点M,设点M的坐标为,直线的斜率为k,则直线的方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论