安徽省滁州市来安县第二中学2025届高一上数学期末经典模拟试题含解析_第1页
安徽省滁州市来安县第二中学2025届高一上数学期末经典模拟试题含解析_第2页
安徽省滁州市来安县第二中学2025届高一上数学期末经典模拟试题含解析_第3页
安徽省滁州市来安县第二中学2025届高一上数学期末经典模拟试题含解析_第4页
安徽省滁州市来安县第二中学2025届高一上数学期末经典模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省滁州市来安县第二中学2025届高一上数学期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线,,若,则实数的值为A.8 B.2C. D.-22.幂函数y=f(x)的图象过点(4,2),则幂函数y=f(x)的图象是A. B.C. D.3.已知函数的图象上的每一点的纵坐标扩大到原来的倍,横坐标扩大到原来的倍,然后把所得的图象沿轴向右平移个单位,这样得到的曲线和的图象相同,则已知函数的解析式为A B.C. D.4.设全集,集合,则等于A. B.C. D.5.已知不等式的解集为,则不等式的解集是()A. B.C.或 D.或6.已知中,,,点M是线段BC(含端点)上的一点,且,则的取值范围是()A. B.C. D.7.已知函数以下关于的结论正确的是()A.若,则B.的值域为C.在上单调递增D.的解集为8.已知集合A={x|<2},B={x|log2x>0},则()A. B.A∩B=C.或 D.9.已知函数,若函数有四个零点,则的取值范围是A. B.C. D.10.函数f(x)=lnx﹣1的零点所在的区间是A(1,2) B.(2,3)C.(3,4) D.(4,5)二、填空题:本大题共6小题,每小题5分,共30分。11.如图是函数在一个周期内的图象,则其解析式是________12.幂函数的图像在第___________象限.13.已知角的终边过点,求_________________.14.已知函数,若方程有4个不同的实数根,则的取值范围是____15.已知幂函数的图象经过点,则___________.16.已知函数,,对任意,总存在使得成立,则实数a的取值范围是_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,,.(1)若,解关于方程;(2)设,函数在区间上的最大值为3,求的取值范围;(3)当时,对任意,函数在区间上的最大值与最小值的差不大于1,求的取值范围.18.已知函数f(x)的图像关于原点对称,当时,.(1)求函数f(x)的解析式;(2)求函数f(x)的单调区间.19.已知(1)化简;(2)若,求值20.已知函数是二次函数,,(1)求的解析式;(2)解不等式21.某汽车配件厂拟引进智能机器人来代替人工进行某个操作,以提高运作效率和降低人工成本,已知购买x台机器人的总成本为(万元)(1)若使每台机器人的平均成本最低,问应买多少台?(2)现按(1)中求得的数量购买机器人,需要安排m人协助机器人,经实验知,每台机器人的日平均工作量(单位:次),已知传统人工每人每日的平均工作量为400次,问引进机器人后,日平均工作量达最大值时,用人数量比引进机器人前工作量达此最大值时的用人数量减少百分之几?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用两条直线平行的充要条件求解【详解】:∵直线l1:2x+y-2=0,l2:ax+4y+1=0,l1∥l2,∴,解得a=8故选A.【点睛】】本题考查实数值的求法,是基础题,解题时要认真审题,注意直线平行的性质的灵活运用2、C【解析】设出函数的解析式,根据幂函数y=f(x)的图象过点(4,2),构造方程求出指数的值,再结合函数的解析式研究其性质即可得到图象【详解】设幂函数的解析式为y=xa,∵幂函数y=f(x)的图象过点(4,2),∴2=4a,解得a=∴,其定义域为[0,+∞),且是增函数,当0<x<1时,其图象在直线y=x的上方.对照选项故选C【点睛】本题考查的知识点是函数解析式的求解及幂函数图象及其与指数的关系,其中对于已经知道函数类型求解析式的问题,要使用待定系数法3、B【解析】分析:将.的图象轴向左平移个单位,然后把所得的图象上的每一点的纵坐标变为原来的四分之一倍,横坐标变为原来的二分之一倍,即可得到函数的图象,从而可得结果.详解:利用逆过程:将.的图象轴向左平移个单位,得到的图象;将的图象上的每一点的纵坐标变为原来的四分之一倍得到的图象;将的图象上的每一点的横坐标变为原来的四分之一倍得到的图象,所以函数的解析式为,故选B.点睛:本题主要考查了三角函数图象变换,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.4、A【解析】,=5、A【解析】由不等式的解集为,可得的根为,由韦达定理可得的值,代入不等式解出其解集即可.【详解】的解集为,则的根为,即,,解得,则不等式可化为,即为,解得或,故选:A.6、D【解析】如图所示,建立直角坐标系,则,,,.利用向量的坐标运算可得.再利用数量积运算,可得.利用数量积性质可得,可得.再利用,,可得,即可得出【详解】如图所示,建立直角坐标系则,,,,,及四边形为矩形,,,.即点在直线上,,,,,,即(当且仅当或时取等号),综上可得:故选:【点睛】本题考查了向量的坐标运算、数量积运算及其性质、不等式的性质等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题7、B【解析】A选项逐段代入求自变量的值可判断;B选项分别求各段函数的值域再求并集可判断;C选项取特值比较大小可判断不单调递增;D选项分别求各段范围下的不等式的解集求并集即可判断.【详解】解:A选项:当时,若,则;当时,若,则,故A错误;B选项:当时,;当时,,故的值城为,B正确;C选项:当时,,当时,,在上不单调递增,故C错误;D选项:当时,若,则;当时,若,则,故的解集为,故D错误;故选:B.8、A【解析】先分别求出集合A和B,再利用交集定义和并集定义能求出结果【详解】由2-x<2得x>-1,所以A={x|x>-1};由log2x>0得x>1,所以B={x|x>1}.所以A∩B={x|x>1}.故选A【点睛】本题考查交集、并集的求法及应用,考查指数对数不等式的解法,是基础题9、B【解析】不妨设,的图像如图所示,则,,其中,故,也就是,则,因,故.故选:B.【点睛】函数有四个不同零点可以转化为的图像与动直线有四个不同的交点,注意函数的图像有局部对称性,而且还是倒数关系.10、B【解析】∵,在递增,而,∴函数的零点所在的区间是,故选B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由图可得;,则;由五点作图法可得,解得,所以其解析式为考点:1.三角函数的图像;2.五点作图法;12、【解析】根据幂函数的定义域及对应值域,即可确定图像所在的象限.【详解】由解析式知:定义域为,且值域,∴函数图像在一、二象限.故答案为:一、二.13、【解析】先求出,再利用三角函数定义,即可得出结果.【详解】依题意可得:,故答案为:【点睛】本题考查了利用终边上点来求三角函数值,考查了理解辨析能力和运算能力,属于基础题目.14、【解析】先画出函数的图象,把方程有4个不同的实数根转化为函数的图象与有四个不同的交点,结合对数函数和二次函数的性质,即可求解.【详解】由题意,函数,要先画出函数的图象,如图所示,又由方程有4个不同的实数根,即函数的图象与有四个不同的交点,可得,且,则=,因为,则,所以.故答案为.【点睛】本题主要考查了函数与方程的综合应用,其中解答中把方程有4个不同的实数根,转化为两个函数的有四个交点,结合对数函数与二次函数的图象与性质求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于中档试题.15、##【解析】根据题意得到,求出的值,进而代入数据即可求出结果.【详解】由题意可知,即,所以,即,所以,因此,故答案为:.16、【解析】根若对于任意的∈,总存在,使得g(x0)=f(x1)成立,得到函数f(x)在上值域是g(x)在上值域的子集,然后利用求函数值域之间的关系列出不等式,解此不等式组即可求得实数a的取值范围即可【详解】∵,∴f(0)≤f(x)≤f(1),即0≤f(x)≤4,即函数f(x)的值域为B=[0,4],若对于任意的∈,总存在,使得g(x0)=f(x1)成立,则函数f(x)在上值域是g(x)在上值域A的子集,即B⊆A①若a=0,g(x)=0,此时A={0},不满足条件②当a≠0时,在是增函数,g(x)∈[﹣+3a,],即A=[﹣+3a,],则,∴综上,实数a的取值范围是故答案为【点睛】本题主要考查了函数恒成立问题,以及函数的值域,同时考查了分类讨论的数学思想,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】(1)将代入函数的解析式,并求出函数的定义域,利用对数的运算法则可解出方程;(2)当时,,分、和三种情况讨论,去绝对值,分析函数在区间上的单调性,结合该函数在区间上的最大值为,可求出实数的取值范围;(3)利用对数的运算性质可得出,可知该函数在区间上为减函数,由题意得出对任意的恒成立,求出在上的最大值,即可得出实数的取值范围.【详解】(1)当时,,则,定义域为.由,可得,可得,解得或(舍去),因此,关于的方程的解为;(2)当时,.当时,对任意的恒成立,则,此时,函数在区间上为增函数,,合乎题意;当时,对任意的恒成立,则,此时,函数在区间上为减函数,,解得,不合乎题意;当时,令,得,此时,所以,函数在区间上为减函数,在区间上为增函数.,,由于,所以,解得.此时,.综上所述,实数的取值范围是;(3),由于内层函数在区间为减函数,外层函数为增函数,所以,函数在区间上为减函数,所以,,由题意可得,可得,所以,.①当时,;②当时,令,设,可得.下面利用定义证明函数在区间上的单调性,任取、且,即,,,,,,即,所以,函数在区间上单调递减,当时,函数取得最大值.综上所述,函数在上的最大值为,.因此,实数的取值范围是.【点睛】本题考查对数方程的求解、考查了利用带绝对值函数的最值求参数,同时也考查了函数不等式恒成立问题,考查运算求解能力,属于中等题.18、(1)(2)单调递减区间为,单调递增区间为【解析】(1)根据奇函数定义结合已知可得;(2)先求时的单调区间,然后由对称性可得.【小问1详解】∵函数f(x)的图像关于原点对称.∴.当时,,又时,,∴当时,.∴【小问2详解】当时,函数的图像开口向下,对称轴为直线,∴函数f(x)在[0,3]上单调递增,在[3,+∞)上单调递减.又∵函数f(x)的图像关于原点对称,∴函数f(x)的单调递减区间为;单调递增区间为.19、(1)(2).【解析】(1)根据诱导公式及同角关系式化简即得;(2)根据可知,从而求得结果.【小问1详解】由诱导公式可得:;【小问2详解】由于,有,得,,可得故的值为.20、(1)(2)【解析】(1)根据得对称轴为,再结合顶点可求解;(2)由(1)得,然后直接解不等式即可.【小问1详解】由,知此二次函数图象的对称轴为,又因为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论